Manuka Honey emerges miracle drug for lung infection if combined with widely used ‘amikacin’

A potential new treatment combining natural manuka honey with a widely used drug has been developed by scientists at Aston University to treat a potentially lethal lung infection and greatly reduce side effects of one of the current drugs used for its treatment.

Manuka honey can also be used to help treat wounds, injuries, improve oral health, soothe a sore throat and treat ulcers. The findings are published in the journal Microbiology.

The scientists in the Mycobacterial Research Group in the College of Health and Life Sciences at Aston University were able to combine manuka honey and the drug amikacin in a lab-based nebulisation formulation to treat the harmful bacterial lung infection Mycobacterium abscessus, said lead author and PhD researcher Victoria Nolan.

Manuka honey is long known to have wide ranging medicinal properties, but more recently has been identified for its broad spectrum antimicrobial activity. Now scientists have found that manuka honey has the potential to kill a number of drug resistant bacterial infections such as Mycobacterium abscessus – which usually affects patients with cystic fibrosis (CF) or bronchiectasis.

Manuka honey could help to clear deadly drug-resistant lung infection – research/Photo:Microbiology Society

According to the Cystic Fibrosis Trust, CF is a genetic condition affecting around 10,800 people – one in every 2,500 babies born in the UK – and there are more than 100,000 people with the condition worldwide. The NHS defines bronchiectasis  as a long-term condition where the airways of the lungs become widened, leading to a build-up of excess mucus that can make the lungs more vulnerable to infection..

In the study, the researchers used samples of the bacteria Mycobacterium abscessus taken from 16 infected CF patients. They then tested the antibiotic amikacin, combined with manuka honey, to discover what dosage was required to kill the bacteria.

Dr Jonathan Cox, senior lecturer in microbiology, Aston University said: “By combining a totally natural ingredient such as manuka honey with amikacin, one of the most important yet toxic drugs used for treating Mycobacterium abscessus, we have found a way to potentially kill off these bacteria with eight times less drug than before.”

As part of the study the team used a lab-based lung model and nebuliser – a device that produces a fine spray of liquid often used for inhaling a medicinal drug. By nebulising manuka honey and amikacin together, it was found they could improve bacterial clearance, even when using lower doses of amikacin, which would result in less life-changing side-effects to the patient.

In the UK, of the 10,800 people living with CF, Mycobacterium abscessus infects 13% of all patients with the condition. This new approach is advantageous not only because it has the potential to kill off a highly drug resistant infection, but because of the reduced side effects, benefitting quality of life and greatly improving survival chances for infected CF patients.

Mycobacterium abscessus is a bacterial pathogen from the same family that causes tuberculosis, but this bug differs by causing serious lung infections in people (particularly children) with pre-existing lung conditions, such as CF and bronchiectasis, as well as causing skin and soft tissue infections. The bacteria is also highly drug resistant.

Currently, patients are given a cocktail of antibiotics, consisting of 12 months or more of antimicrobial chemotherapy and often doesn’t result in a cure. The dosage of amikacin usually used on a patient to kill the infection is 16 micrograms per millilitre. But the researchers found that the new combination using manuka honey, required a dosage of just 2 micrograms per millitre of amikacin – resulting in a one eighth reduction in the dosage of the drug.

Until now Mycobacterium abscessus has been virtually impossible to eradicate in people with cystic fibrosis. It can also be deadly if the patient requires a lung transplant because they are not eligible for surgery if the infection is present.

 

 

 

 

How can twins share DNA from two fathers? One in a million case baffles doctors

A Portugal woman has revealed recently that her twin children has DNA of both sex partners with whom she had sex on the same day.

Now one year and four months old, these twins were tested for their DNA and the doctors were surprised to see that both of them had the DNA of both fathers.

The woman, who preferred not to be identified, said after having sex with them on the same day, she became pregnant with the twins. The woman hails from the town of Mineiros in the state of Goias in Portugal.

What’s heteroparental superfecundation?

The case has become what the medical doctors said was the rarest of the rare 20th case of ‘heteroparental superfecundation’ ever recorded in the world.

Representational picture of twins / https://www.womenshealth.gov/

It means a pregnancy that produces twins with two different fathers. Dr Tulio Jorge Franco, who has been studying the unusual pregnancy since the beginning said, “two eggs from the same mother are fertilized by different men. The babies share the mother’s genetic material, but they grow in different placentas”.

According to Jason Kasraie, the chair of the Association of Clinical Embryologists, a woman can release two eggs at the same time. Since sperm can survive for a few days in the female reproductive tract, loitering in the corner of the womb and the fallopian tube, it would be possible to have sex with one father-to-be in advance of the egg being released, and another just after ovulation.” Or it could be possibel when the woman releases two eggs a few days apart but in the same reproductive cycle.

It was realized only when one boy’s DNA did not fully match with the father, one of the two men who fathered the twins. The woman recollected: “I remembered that I had had sex with another man and called him to take the test, which was positive… I was surprised by the results. I didn’t know this could happen and the babies are very similar.”

However, the birth certificate of both of them is in the name of one father and “he takes care of both of them, helps me a lot and gives them all the necessary support that they need,” she told media.

Doctor confirms

Dr Tulio Jorge Franco recently confirmed the details in a talk with the Portuguese news outlet G1. “Two eggs from the same mother are fertilized by different men. The babies share the mother’s genetic material, but they grow in different placentas,” he explained.

He further added that it is an extremely rare case that happens once in a million. “I never imagined that I would see such a case in my life,” he noted.

Eating behavior of parents plays key role in child’s emotional eating

Emotional eating, or eating as a coping mechanism for negative, positive, or stress-driven emotions, is associated with unhealthy dietary patterns and weight gain. A research article featured in the Journal of Nutrition Education and Behavior, published by Elsevier, discusses adolescent vulnerability to emotional eating and how various feeding practices used by parents, such as restriction, food as reward, and child involvement, influence eating behavior.

“Emotional eating was previously found to be more learned than inherited. This study examined not only the interaction between parents when feeding their children, but also what children learned from watching their parents eat,” said lead author Joanna Klosowska, MSc, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium.

Eating/Photo:en.wikipedia.org

Over the four years between 2013 −2017, covering the time from late childhood to middle adolescence, changes occurred in some parental practices. Parents reported higher monitoring and healthy modeling feeding practices, while the reported levels of food restriction and the healthy environment remained unchanged. During the same time period, adolescents reported a considerable increase in emotional eating from below the average in 2013 to above the average in 2017, according to the norms for the Dutch population. Additionally, the maladaptive way in which they regulated their emotions was also associated with emotional eating.

Dining/Photo:en.wikipedia.org

Food as a reward and monitoring food increased emotional eating especially in instances where the adolescent employed maladaptive strategies in regulating their emotions. Child involvement in meals had an opposite effect since it was associated with higher levels of emotion regulation and lower levels of emotional eating. Interestingly, a parent’s restrained eating behavior was linked to less emotional eating in adolescents.

“This study suggests that parents continue to play an important role in their child’s eating behavior into their teen years,” said Klosowska. “Additional research is needed to understand the impact restrained eating demonstrated by a parent impacts the emotional eating of a child.”

 

DNA screen: World-first preventative saliva test for cancer and heart disease risk

Young Australians can now access a free DNA saliva test to learn whether they face increased risk of some cancers and heart disease, which can be prevented or treated early if detected, in a world-first DNA screening study.

The nationally collaborative project, led by Monash University and supported by researchers and clinicians across Australia, will screen at least 10,000 people aged 18-40 for genes that increase risk of certain types of cancers and heart disease that often go undetected.

Those found to be at high risk after DNA testing – about one in 75 or 1.3 per cent – will have their situation explained by experts and be offered genetic counselling and prevention measures, such as regular scans and check-ups.

cancer/photo:en.wikipedia.org

Until now, genetic testing for the DNA changes that increase disease risk has only been available on a small scale for those with a known family history or prior disease diagnosis. Population testing, open to everyone, has the potential to drastically improve access and maximize the preventive benefits of DNA testing.

Monash University’s Associate Professor Paul Lacaze said the project enabled a more efficient and equitable approach to genetic testing, identifying far more people at high risk than current testing methods.

“We hope to identify those at risk while they are young and healthy, not after the fact, and empower them to make more informed decisions about their health,” he said. “For some people, this could save their lives through early detection and prevention of cancer and heart disease. This will also save considerable health system costs in Australia through prevention.

“Providing genetic testing based on family history alone is not enough. Up to 90 per cent of those at high risk in the general population are not identified by current family history-based testing. Most people don’t find out about their genetic risk until it’s too late, like after an incurable cancer or heart attack is diagnosed. We want to change that.”

DNA Screen will identify people with DNA variants in the BRCA1 and BRCA2 genes that lead to an increased risk of hereditary breast and ovarian cancer in women. These genes are also linked to breast and prostate cancer in men, although not as strongly. Men and women who carry DNA variants in the BRCA1 and BRCA2 genes can also pass them onto their children.

The DNA Screen test will also focus on Lynch Syndrome – another condition that increases risk for colorectal, endometrial, and other gastrointestinal cancers. Both cancer-related conditions have effective, proven interventions available to reduce risk if identified early.

This includes attending annual check-ups and screens from age 30, and the option of risk-reducing surgery for some people. Early detection and prevention are often life-saving for cancer.

The DNA test also encompasses heart disease risk, focusing on familial hypercholesterolemia (FH) or ‘genetic high cholesterol’, which results in high risk of heart disease from a young age. Despite effective medications such as statins being available to reduce risk, an estimated 95 per cent of FH carriers are currently undiagnosed.

Associate Professor Lacaze, from the Monash University School of Public Health and Preventive Medicine, is leading a team of national collaborators who were awarded a $2.97 million Medical Research Future Fund (MRFF) grant for the project. The project is supported by the Precision Medicine laboratory at Monash University and the state-of-the-art Biobanking Victoria facility.

The eventual goal is to develop a new population-based DNA screening program that could be offered through the Australian public healthcare system, available to everyone but targeted on certain medically-actionable conditions where early detection is key.

“We expect to identify about 1 in 75 people at high risk of these diseases. Those found to be high risk won’t necessarily get the disease, but pinpointing risk before symptoms appear enables prevention through regular check-ups, medication, or risk-reducing surgery. It could save their life.

DNA Screen, which is recruiting young people via social media, is expected to save lives and could lead to a wide scale preventive DNA testing program for cancer and heart disease risk, where early detection and prevention can be life-saving.

DNA Screen is the world’s first preventive DNA screening study designed specifically to assess population DNA screening through a national healthcare system. The test is free and involves placing a saliva sample into a small tube received by mail, and sending it back in a postage paid envelope. People can sign up online at dnascreen.monash.edu

 

Mobile phone app accurately detects COVID-19 infection in people’s voices

Artificial intelligence (AI) can be used to detect COVID-19 infection in people’s voices by means of a mobile phone app, according to research to be presented on Monday at the European Respiratory Society International Congress in Barcelona, Spain [1].

The AI model used in this research is more accurate than lateral flow/rapid antigen tests and is cheap, quick and easy to use, which means it can be used in low-income countries where PCR tests are expensive and/or difficult to distribute.

Ms Wafaa Aljbawi, a researcher at the Institute of Data Science, Maastricht University, The Netherlands, told the congress that the AI model was accurate 89% of the time, whereas the accuracy of lateral flow tests varied widely depending on the brand. Also, lateral flow tests were considerably less accurate at detecting COVID infection in people who showed no symptoms.

COVID-19 infection usually affects the upper respiratory track and vocal cords, leading to changes in a person’s voice.

Covid/commons.wikimedia.org

“These promising results suggest that simple voice recordings and fine-tuned AI algorithms can potentially achieve high precision in determining which patients have COVID-19 infection,” she said.Moreover, they enable remote, virtual testing and have a turnaround time of less than a minute. They could be used, for example, at the entry points for large gatherings, enabling rapid screening of the population.”

The app is installed on the user’s mobile phone, the participants report some basic information about demographics, medical history and smoking status, and then are asked to record some respiratory sounds. These include coughing three times, breathing deeply through their mouth three to five times, and reading a short sentence on the screen three times.

The researchers used a voice analysis technique called Mel-spectrogram analysis, which identifies different voice features such as loudness, power and variation over time.

“In this way we can decompose the many properties of the participants’ voices,” said Ms Aljbawi. “In order to distinguish the voice of COVID-19 patients from those who did not have the disease, we built different artificial intelligence models and evaluated which one worked best at classifying the COVID-19 cases.”

Its overall accuracy was 89%, its ability to correctly detect positive cases (the true positive rate or “sensitivity”) was 89%, and its ability to correctly identify negative cases (the true negative rate or “specificity”) was 83%.

“These results show a significant improvement in the accuracy of diagnosing COVID-19 compared to state-of-the-art tests such as the lateral flow test,” said Ms Aljbawi.

The patients were “high engagers”, who had been using the app weekly over months or even years to record their symptoms and other health information, record medication, set reminders, and have access to up-to-date health and lifestyle information. Doctors can assess the data via a clinician dashboard, enabling them to provide oversight, co-management and remote monitoring.

A rechargeable, remote-controllable cyborg cockroach to monitor hazardous environment [Details]

An international team led by researchers at the RIKEN Cluster for Pioneering Research (CPR) has engineered a system for creating remote controlled cyborg cockroaches, equipped with a tiny wireless control module that is powered by a rechargeable battery attached to a solar cell. Despite the mechanic devices, ultrathin electronics and flexible materials allow the insects to move freely. These achievements, reported in the scientific journal npj Flexible Electronics on September 5, will help make the use of cyborg insects a practical reality.

Researchers have been trying to design cyborg insects—part insect, part machine—to help inspect hazardous areas or monitor the environment. However, for the use of cyborg insects to be practical, handlers must be able to control them remotely for long periods of time. This requires wireless control of their leg segments, powered by a tiny rechargeable battery. Keeping the battery adequately charged is fundamental—nobody wants a suddenly out-of-control team of cyborg cockroaches roaming around. While it’s possible to build docking stations for recharging the battery, the need to return and recharge could disrupt time-sensitive missions. Therefore, the best solution is to include an on-board solar cell that can continuously ensure that the battery stays charged.

All of this is easier said than done. To successfully integrate these devices into a cockroach that has limited surface area required the research team to develop a special backpack, ultrathin organic solar cell modules, and an adhesion system that keeps the machinery attached for long periods of time while also allowing natural movements.

Researchers at RIKEN, Japan have created remote controlled cyborg cockroaches, equipped with a tiny wireless control module that is powered by a rechargeable battery attached to a solar cell/RIKEN

Led by Kenjiro Fukuda, RIKEN CPR, the team experimented with Madagascar cockroaches, which are approximately 6 cm long. They attached the wireless leg-control module and lithium polymer battery to the top of the insect on the thorax using a specially designed backpack, which was modeled after the body of a model cockroach. The backpack was 3D printed with an elastic polymer and conformed perfectly to the curved surface of the cockroach, allowing the rigid electronic device to be stably mounted on the thorax for more than a month.

The ultrathin 0.004 mm thick organic solar cell module was mounted on the dorsal side of the abdomen. “The body-mounted ultrathin organic solar cell module achieves a power output of 17.2 mW, which is more than 50 times larger than the power output of current state-of-the art energy harvesting devices on living insects,” according to Fukuda.

cockroach/Photo:en.wikipedia.org

The ultrathin and flexible organic solar cell, and how it was attached to the insect, proved necessary to ensure freedom of movement. After carefully examining natural cockroach movements, the researchers realized that the abdomen changes shape and portions of the exoskeleton overlap. To accommodate this, they interleaved adhesive and non-adhesive sections onto the films, which allowed them to bend but also stay attached. When thicker solar cell films were tested, or when the films were uniformly attached, the cockroaches took twice as long to run the same distance, and had difficulty righting themselves when on their backs.

Once these components were integrated into the cockroaches, along with wires that stimulate the leg segments, the new cyborgs were tested. The battery was charged with pseudo-sunlight for 30 minutes, and animals were made to turn left and right using the wireless remote control.

“Considering the deformation of the thorax and abdomen during basic locomotion, a hybrid electronic system of rigid and flexible elements in the thorax and ultrasoft devices in the abdomen appears to be an effective design for cyborg cockroaches,” says Fukuda. “Moreover, since abdominal deformation is not unique to cockroaches, our strategy can be adapted to other insects like beetles, or perhaps even flying insects like cicadas in the future.”

Milestone reached in wireless electricity by Korean researchers

Experiments on streaming electricity wirelessly have been underway for over half-a-century but a new milestone has been reached last week when South Korean scientists successfully achieved it across a room through thin air. The could transmit 400 megawatts of electricity over nearly 100 feet using infrared laser light.

The research has been published in the journal Optics Express.

“The ability to power devices wirelessly could eliminate the need to carry around power cables for our phones or tablets. It could also power various sensors such as those used for monitoring processes in manufacturing plants,” said research team leader Jinyong Ha from Sejong University.

Four hundred MW is just enough power to charge small sensors but paves the way for larger amounts of power being able to be sent wirelessly gradually increasing the distance, possibly to charge mobile phones.

Currently, wireless charging over very small distances has been possible mostly for mobile phones and it is based on inductive charging, where a copper coil generates a magnetic field that facilitates the movement of a charge from the charging pad into the phone’s battery.

Using laser charging, the new method allows it at distances over 98 feet and provides “safe high-power illumination with less light loss.”

“While most other approaches require the receiving device to be in a special charging cradle or to be stationary, distributed laser charging enables self-alignment without tracking processes as long as the transmitter and receiver are in the line of sight of each other,” Ha said. “It also automatically shifts to a safe low power delivery mode if an object or a person blocks the line of sight.”

“The ability to power devices wirelessly could eliminate the need to carry around power cables for our phones or tablets,” research team leader Jinyong Ha from Sejong University in South Korea said in a statement. “It could also power various sensors such as those used for monitoring processes in manufacturing plants.”

“Using the laser charging system to replace power cords in factories could save on maintenance and replacement costs,” Ha said. “This could be particularly useful in harsh environments where electrical connections can cause interference or pose a fire hazard.”

First underground radar images from Mars Perseverance rover reveal some surprises

Key takeaways:

  • Roving the Red Planet. Perseverance landed on Mars in February 2021 and has been gathering data on the planet’s geology and climate and searching for signs of ancient life.​​​​​​
  • What lies beneath. The rover’s subsurface radar experiment, co-led by UCLA’s David Paige, has returned images showing unexpected variations in rock layers beneath the Jezero crater.
  • Probing the past. The variations could indicate past lava flows or possibly a river delta even older than the one currently being explored on the crater floor.

After a tantalizing year-and-a-half wait since NASA’s Mars Perseverance rover touched down on our nearest planetary neighbor, new data is arriving — and bringing with it a few surprises.

The rover, which is about the size of car and carries seven scientific instruments, has been probing Mars’ 30-mile-wide Jezero crater, once the site of a lake and an ideal spot to search for evidence of ancient life and information about the planet’s geological and climatic past.

Rendering of Perseverance, whose RIMFAX technology is exploring what lies beneath the Martian surface. Photo: NASA/JPL/Caltech/FFI

In a paper published today in the journal Science Advances, a research team led by UCLA and the University of Oslo reveals that rock layers beneath the crater’s floor, observed by the rover’s ground-penetrating radar instrument, are unexpectedly inclined. The slopes, thicknesses and shapes of the inclined sections suggest they were either formed by slowly cooling lava or deposited as sediments in the former lake.

Perseverance is currently exploring a delta on the western edge of the crater, where a river once fed the lake, leaving behind a large deposit of dirt and rocks it picked up along its course. As the rover gathers more data, the researchers hope to clear up the complex history of this part of the Red Planet.

“We were quite surprised to find rocks stacked up at an inclined angle,” said David Paige, a UCLA professor of Earth, planetary and space sciences and one of the lead researchers on the Radar Imager for Mars Subsurface Experiment, or RIMFAX. “We were expecting to see horizontal rocks on the crater floor. The fact that they are tilted like this requires a more complex geologic history. They could have been formed when molten rock rose up towards the surface, or, alternatively, they could represent an older delta deposit buried in the crater floor.”

Paige said that most of the evidence gathered by the rover so far points to an igneous, or molten, origin, but based on the RIMFAX data, he and the team can’t yet say for certain how the inclined layers formed. RIMFAX obtains a picture of underground features by sending bursts of radar waves below the surface, which are reflected by rock layers and other obstacles. The shapes, densities, thicknesses, angles and compositions of underground objects affect how the radar waves bounce back, creating a visual image of what lies beneath.

During Perseverance’s initial 3-kilometer traverse, the instrument has obtained a continuous radar image that reveals the electromagnetic properties and bedrock stratigraphy — the arrangement of rock layers — of Jezero’s floor to depths of 15 meters, or about 49 feet. The image reveals the presence of ubiquitous layered rock strata, including those that are inclined at up to 15 degrees. Compounding the mystery, within those inclined areas are some perplexing highly reflective rock layers that in fact tilt in multiple directions.

“RIMFAX is giving us a view of Mars stratigraphy similar to what you can see on Earth in highway road cuts, where tall stacks of rock layers are sometimes visible in a mountainside as you drive by,” Paige explained. “Before Perseverance landed, there were many hypotheses about the exact nature and origin of the crater floor materials. We’ve now been able to narrow down the range of possibilities, but the data we’ve acquired so far suggest that the history of the crater floor may be quite a bit more complicated than we had anticipated.”

The data collected by RIMFAX will provide valuable context to rock samples Perseverance is collecting, which will eventually be brought back to Earth.

“RIMFAX is giving us the backstory of the samples we’re going to analyze. It’s exciting that the rover’s instruments are producing data and we’re starting to learn, but there’s a lot more to come,” Paige said. “We landed on the crater floor, but now we’re driving up on the actual delta, which is the main target of the mission. This is just the beginning of what we’ll hopefully soon know about Mars.”

The paper, “Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars,” is one of three simultaneously published papers discussing some of the first data from Perseverance.

Simple method destroys dangerous ‘forever chemicals,’ making water safe

Key takeaways:

  • World’s water tainted. Synthetic PFAS, which have been linked to cancer and other diseases, have contaminated nearly every drop of water on the planet.
  • Unbreakable bond. These chemicals contain a carbon-fluorine bond that is almost impossible to break, making it extremely difficult to eradicate them from water supplies.
  • Off with their heads! Researchers devised a “guillotine” solution that uses moderate heat and inexpensive reagents to remove the “heads” of PFAS, initiating their destruction.

If you’re despairing at recent reports that Earth’s water sources have been thoroughly infested with hazardous human-made chemicals called PFAS that can last for thousands of years, making even rainwater unsafe to drink, there’s a spot of good news.

Chemists at UCLA and Northwestern University have developed a simple way to break down almost a dozen types of these nearly indestructible “forever chemicals” at relatively low temperatures with no harmful byproducts.

Simple method destroys dangerous ‘forever chemicals,’ making water safe

In a paper published today in the journal Science, the researchers show that in water heated to just 176 to 248 degrees Fahrenheit, common, inexpensive solvents and reagents severed molecular bonds in PFAS that are among the strongest known and initiated a chemical reaction that “gradually nibbled away at the molecule” until it was gone, said UCLA distinguished research professor and co-corresponding author Kendall Houk.

The simple technology, the comparatively low temperatures and the lack of harmful byproducts mean there is no limit to how much water can be processed at once, Houk added. The technology could eventually make it easier for water treatment plants to remove PFAS from drinking water.

Per- and polyfluoroalkyl substances­ — PFAS for short — are a class of around 12,000 synthetic chemicals that have been used since the 1940s in nonstick cookware, waterproof makeup, shampoos, electronics, food packaging and countless other products. They contain a bond between carbon and fluorine atoms that nothing in nature can break.

PFAS used in shampoos

When these chemicals leach into the environment through manufacturing or everyday product use, they become part of the Earth’s water cycle. Over the past 70 years, PFAS have contaminated virtually every drop of water on the planet, and their strong carbon-fluorine bond allows them to pass through most water treatment systems completely unharmed. They can accumulate in the tissues of people and animals over time and cause harm in ways that scientists are just beginning to understand. Certain cancers and thyroid diseases, for example, are associated with PFAS.

For these reasons, finding ways to remove PFAS from water has become particularly urgent. Scientists are experimenting with many remediation technologies, but most of them require extremely high temperatures, special chemicals or ultraviolet light and sometimes produce byproducts that are also harmful and require additional steps to remove.

Air pollution is more dangerous for women than men: Study

The impact of breathing diesel exhaust fumes may be more severe for females than males, according to new research that will be presented at the European Respiratory Society International Congress in Barcelona, Spain [1].

Researchers looked for changes in people’s blood brought about by exposure to diesel exhaust. In both females and males, they found changes in components of the blood related to inflammation, infection and cardiovascular disease, but they found more changes in females than males.

The research was presented by Dr Hemshekhar Mahadevappa, from the University of Manitoba, Winnipeg, Canada and was a collaboration between two research groups led by Professor Neeloffer Mookherjee at the University of Manitoba and Professor Chris Carlsten at the University of British Columbia, Vancouver, Canada. Dr Mahadevappa told the Congress: “We already know that there are sex differences in lung diseases such as asthma and respiratory infections.

Air pollution/Photo:en.wikipedia.org

Research showed that breathing diesel exhaust creates inflammation in the lungs and has an impact on how the body deals with respiratory infections. In this study, we wanted to look for any effects in the blood and how these differ in females and males.”

The study involved ten volunteers, five female and five male, who were all healthy non-smokers. Each volunteer spent four hours breathing filtered air and four hours breathing air containing diesel exhaust fumes at three different concentrations – 20, 50 and 150 micrograms of fine particulate matter (PM2.5) per cubic metre – with a four-week break in between each exposure.

Volunteers donated blood samples 24 hours after each exposure and the researchers made detailed examinations of the volunteers’ blood plasma. Plasma is the liquid component of the blood that carries blood cells as well as hundreds of proteins and other molecules around the body. Using a well-established analysis technology called liquid chromatography–mass spectrometry, the researchers looked for changes in the levels of different proteins following exposure to diesel exhaust and compared the changes in females and males.

Airpollution/Photo:en.wikipedia.org

Comparing the plasma samples, the researchers found levels of 90 proteins that were distinctly different between female and male volunteers following exposure to diesel exhaust. Among the proteins that differed between females and males, were some that are known to play a role in inflammation, damage repair, blood clotting, cardiovascular disease and the immune system. Some of these differences became clearer when volunteers were exposed to the higher levels of diesel exhaust.

Professor Mookherjee explained: “These are preliminary findings, however they show that exposure to diesel exhaust has different effects in female bodies compared to male and that could indicate that air pollution is more dangerous for females than males.

“This is important as respiratory diseases such as asthma are known to effect females and males differently, with females more likely to suffer severe asthma that does not respond to treatments. Therefore, we need to know a lot more about how females and males respond to air pollution and what this means for preventing, diagnosing and treating their respiratory disease.”

Air pollution/photo:en.wikipedia.org

Professor Zorana Andersen from the University of Copenhagen, Denmark, is Chair of the European Respiratory Society Environment and Health Committee and was not involved in the research. She said: “We know that exposure to air pollution, especially diesel exhaust, is a major risk factor in diseases such as asthma and chronic obstructive pulmonary disease. There is very little we can do as individuals to avoid beathing polluted air, so we need governments to set and enforce limits on air pollutants.

 

Toxins in old toys can disrupt growth in children, an obstacle for circular economy

Letting children play with hand-me-down plastic toys could constitute a health risk. When researchers at the University of Gothenburg tested a large number of old toys and dress-up items made of plastic, 84 per cent of the items were found to contain toxins that can disrupt growth and development and reproductive capacities in children. These toxins are an obstacle for the circular economy in the future involving reuse and recycling, the researchers explain.

The current use-and-discard behaviour is wasteful with resources and a drain on the Earth’s finite resources. In 2021, the European Parliament adopted a Circular Economy Action Plan. It encourages the re-use, repair and recycling of products and materials. But the question is whether all products are good to reuse again?

Researchers from the University of Gothenburg have recently published an article in the Journal of Hazardous Materials Advances which shows that old toys and dress-up items may contain toxic chemicals that can cause cancer, damage DNA or disrupt the future reproductive capacities of children.

plastic toys/Photo: en.wikipedia.org

Toxic chemicals in most old toys

The hazardous chemicals that were discovered included phthalates and short chain chlorinated paraffins used as plasticizers and flame retardants in toys.

Professor Bethanie Carney Almroth at the University of Gothenburg conducts research on the environmental impact of plastics and plastic-related chemicals, and has led the research study conducted at the interdisciplinary Centre for Future Chemical Risk Assessment and Management Strategies (FRAM). For the study, researchers selected 157 different toys, new and old, and measured their chemical content.

The study showed that most of the older toys and items (84 per cent) contained quantities of chemicals that exceed current legal limits. A total of 30 per cent of the newer toys and items also exceeded the legal limits. By far however, the older toys were significantly worse.

“The concentrations of toxic substances were significantly higher in the older items. For example, many of the old balls were found to have concentrations of phthalates totalling more than 40 per cent of the toy’s weight, which is 400 times over the legal limit,” says Bethanie Carney Almroth.

Many of the older toys contained toxins.

 

Toxins an obstacle to a circular economy

EU legislation on the chemical content of toys, known as the Toy Safety Directive, regulates the permissible quantities of a number of chemical substances found in toys in an attempt to protect the health and safety of children. At present, the permissible limit values for new toys under the Toy Safety Directive are 0.1 per cent by weight for phthalates and 0.15 per cent by weight for short chain chlorinated paraffins.

“The study indicates that reuse and recycling is not always automatically a good thing. The transition to a more circular economy requires bans and other policy measures that get rid of hazardous chemicals from plastic and other materials. Although the Toy Safety Directive has been crucial in reducing the incidence of hazardous chemicals in toys, it has only been applicable to new toys, not old ones,” explains Daniel Slunge, Environmental Economist at the University of Gothenburg.

Apply now to experience the Launch of NASA’s SpaceX Crew-5 Mission[Full details]

Digital content creators are invited to register to attend the launch of the fifth SpaceX Crew Dragon spacecraft and Falcon 9 rocket that will carry astronauts to the International Space Station for a science expedition mission. This mission is part of NASA’s Commercial Crew Program.

The earliest targeted launch date for the agency’s SpaceX Crew-5 mission is Oct. 3, from Kennedy’s Launch Complex 39A. The launch will carry NASA astronauts Nicole Mann, commander; Josh Cassada, pilot; and mission specialists Koichi Wakata, of JAXA (Japan Aerospace Exploration Agency), and Roscosmos cosmonaut Anna Kikina.

If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to be on the front line to see and share the #Crew5 mission launch.

A maximum of 35 social media users will be selected to attend this two-day event and will be given access similar to news media.

NASA Social participants will have the opportunity to:

  • View a launch of the SpaceX Falcon 9 rocket
  • Tour NASA facilities at Kennedy Space Center
  • Meet and interact with Crew-5 subject matter experts
  • Meet fellow space enthusiasts who are active on social media

NASA Social registration for the Crew-5 launch opens on August 31 and the deadline to apply is September 6 at 3 p.m. EDT. All social applications will be considered on a case-by-case basis.


 

APPLY NOW


Do I need to have a social media account to register?
Yes. This event is designed for people who:

  • Actively use multiple social networking platforms and tools to disseminate information to a unique audience.
  • Regularly produce new content that features multimedia elements.
  • Have the potential to reach a large number of people using digital platforms.
  • Reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.
  • Must have an established history of posting content on social media platforms.
  • Have previous postings that are highly visible, respected and widely recognized.

Users on all social networks are encouraged to use the hashtag #NASASocial, and #Crew5.  Updates and information about the event will be shared on Twitter via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram.

How do I register?
Registration for this event opens August 31 and closes at 3 p.m. EDT on September 6. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis.

Can I register if I am not a U.S. citizen?
Because of the security deadlines, registration is limited to U.S. citizens. If you have a valid permanent resident card you will be processed as a U.S. citizen.

When will I know if I am selected?
After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the first notifications on September 13 and waitlist notifications on September 14.

What are NASA Social credentials?
All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria.

If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here.

What are the registration requirements?
Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodation, food, and other amenities.

Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly.

Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas.

IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements.

All registrants must be at least 18 years old.

Photo: Nasa.gov

What if the launch date changes?
Hundreds of different factors can cause a scheduled launch date to change multiple times. The launch date will not be official until after the Flight Readiness Review. If the launch date changes prior to then, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email.

If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours.

NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible.

What if I cannot come to the Kennedy Space Center?
If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation using the #NASASocial hashtag on Twitter. You can watch the launch on NASA Television or www.nasa.gov/live. NASA will provide regular launch and mission updates on @NASA@NASAKennedy, and @Commercial_Crew.

What are the safety protocols for this event?
COVID-19 safety protocols for this event will be communicated closer to the date of the event.

If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! Check back here for updates.

Twitter India rival Koo lays off 40 employees

Twitter rival Koo has laid off at least 40 people in India to prune redundant staff as per its current business requirements, hinting at another failure in overcrowded social media platforms. Currently, WhatsApp and Twitter are the two laeding social platforms in India.

The development was reported by news portal Inc42, which said that Koo CEO Aprameya Radhakrishna is currently abroad, seeking a fresh round of funding. The platform is seeking rapid growth as it plans expansion into other Indian languages soon.

“We recently attained a major milestone of 45 million downloads, growing 10x in the last 2 months. The growth that we are witnessing in our business is reflected in our employee strength of 350+ people strong,” said a spokesperson, as reported by IANS.

Koo, which is aiming to reach the 100 million-download mark, said that it wants to diversify recruitment of machine learning teams.

“Our workforce is streamlined to ensure it is aligned to the current business requirements. As a people-first company, we appreciate the talent and contributions of each of our associates,” the spokesperson added.

Launched in March 2020, Koo is currently available in 10 languages — Hindi, Marathi, Gujarati, Punjabi, Kannada, Tamil, Telugu, Assamese, Bengali and English. So far, the platform has over 45 million downloads but actively leveraged by 7,000 people from across the spectrum.

In February this year, Koo raised nearly $10 million in two different trances from investors, including Capsier Venture Partner, Ravi Modi Family Trust, Ashneer Grover, FBC Venture Partners, and Adventz Finance. Earlier, Koo raised its Series B funding from Tiger Global, Accel Partners, and Blume Ventures.

Being away from excessive blue light from our gadgets slows ageing process

Changes in cell chemistry from blue light exposure observed in fruit flies could also potentially cause detrimental effects on our body, including accelerated aging.

Too much screen use has been linked to obesity and psychological problems. Now a new study has identified a new problem – a study in fruit flies suggests our basic cellular functions could be impacted by the blue light emitted by these devices. These results are published in Frontiers in Aging.

“Excessive exposure to blue light from everyday devices, such as TVs, laptops, and phones, may have detrimental effects on a wide range of cells in our body, from skin and fat cells, to sensory neurons,” said Dr Jadwiga Giebultowicz, a professor at the Department of Integrative Biology at Oregon State University and senior author of this study. “We are the first to show that the levels of specific metabolites –  chemicals that are essential for cells to function correctly – are altered in fruit flies exposed to blue light.“

“Our study suggests that avoidance of excessive blue light exposure may be a good anti-aging strategy,” advised Giebultowicz.

Mobile Phone/Photo:indiainternationaltimes

Turn off the light

The researchers at Oregon State University have previously shown that fruit flies exposed to light ‘turn on’ stress protective genes, and that those kept in constant darkness lived longer.

“To understand why high-energy blue light is responsible for accelerating aging in fruit flies, we compared the levels of metabolites in flies exposed to blue light for two weeks to those kept in complete darkness,” explained Giebultowicz.

Blue light exposure caused significant differences in the levels of metabolites measured by the researchers in the cells of fly heads. In particular, they found that the levels of the metabolite succinate were increased, but glutamate levels were lowered.

“Succinate is essential for producing the fuel for the function and growth of each cell. High levels of succinate after exposure to blue light can be compared to gas being in the pump but not getting into the car,” said Giebultowicz. “Another troubling discovery was that molecules responsible for communication between neurons, such as glutamate, are at the lower level after blue light exposure.”

Accelerating aging

The changes recorded by the researchers suggest that the cells are operating at suboptimal level, and this may cause their premature death, and further, explain their previous findings that blue light accelerates aging.

“LEDs have become the main illumination in display screens such as phones, desktops and TVs, as well as ambient lighting, so humans in advanced societies are exposed to blue light through LED lighting during most of their waking hours. The signaling chemicals in the cells of flies and humans are the same, so the there is potential for negative effects of blue light on humans,“ explains Giebultowicz.

Future work hopes to study the effects directly on human cells.

“We used a fairly strong blue light on the flies – humans are exposed to less intense light, so cellular damage may be less dramatic. The results from this study suggests that future research involving human cells is needed to establish the extent to which human cells may show similar changes in metabolites involved in energy production in response to excessive exposure to blue light,“ concluded Giebultowicz.

NASA hopes to Launch Artemis I Moon Mission on Sept 3

NASA will target Saturday, Sept. 3 at 2:17 p.m. EDT, the beginning of a two-hour window, for the launch of Artemis I, the first integrated test of NASA’s Orion spacecraft, Space Launch System (SLS) rocket, and the ground systems at the agency’s Kennedy Space Center in Florida.

Mission managers met Tuesday to discuss data and develop a forward plan to address issues that arose during an Aug. 29 launch attempt for the flight test. During that launch attempt, teams were not able to chill down the four RS-25 engines to approximately minus 420 degrees F, with engine 3 showing higher temperatures than the other engines. Teams also saw a hydrogen leak on a component of the tail service mast umbilical quick disconnect, called the purge can, and managed the leak by manually adjusting propellant flow rates.

Artemis I launch on Aug 27, 2022 / NASA

In the coming days, teams will modify and practice propellant loading procedures to follow a procedure similar to what was successfully performed during the Green Run at NASA’s Stennis Space Center in Mississippi. The updated procedures would perform the chilldown test of the engines, also called the kick start bleed test, about 30 to 45 minutes earlier in the countdown during the liquid hydrogen fast fill liquid phase for the core stage.

Teams also are configuring platforms at Launch Pad 39B to enable engineers access to the purge can on the tail service mast umbilical. Once access is established, technicians will perform assessments and torque connection points where necessary.

Meteorologists with the U.S. Space Force Space Launch Delta 45 predict favorable weather conditions for Saturday. While rain showers are expected, they are predicted to be sporadic during the launch window.

The mission management team will reconvene Thursday to review data and overall readiness.

NASA Engineer Develops Tiny, High-Powered terahertz Laser to Find Water on the Moon

Finding water on the Moon could be easier with a Goddard technology that uses an effect called quantum tunneling to generate a high-powered terahertz laser, filling a gap in existing laser technology.

Locating water and other resources is a NASA priority crucial to exploring Earth’s natural satellite and other objects in the solar system and beyond. Previous experiments inferred, then confirmed the existence of small amounts of water across the Moon. However, most technologies do not distinguish among water, free hydrogen ions, and hydroxyl, as the broadband detectors used cannot distinguish between the different volatiles.

Goddard engineer Dr. Berhanu Bulcha said a type of instrument called a heterodyne spectrometer could zoom in on particular frequencies to definitively identify and locate water sources on the Moon. It would need a stable, high-powered, terahertz laser, which was prototyped in collaboration with Longwave Photonics through NASA’s Small Business Innovation Research (SBIR) program.

“This laser allows us to open a new window to study this frequency spectrum,” he said. “Other missions found hydration on the Moon, but that could indicate hydroxyl or water. If it’s water, where did it come from? Is it indigenous to the formation of the Moon, or did it arrive later by comet impacts? How much water is there? We need to answer these questions because water is critical for survival and can be used to make fuel for further exploration.”

As the name implies, spectrometers detect spectra or wavelengths of light in order to reveal the chemical properties of matter that light has touched. Most spectrometers tend to operate across broad sections of the spectrum. Heterodyne instruments dial in to very specific light frequencies such as infrared or terahertz. Hydrogen-containing compounds like water emit photons in the terahertz frequency range — 2 trillion to 10 trillion cycles per second — between microwave and infrared.

Like a microscope for subtle differences within a bandwidth like terahertz, heterodyne spectrometers combine a local laser source with incoming light. Measuring the difference between the laser source and the combined wavelength provides accurate readings between sub-bandwidths of the spectrum.

Traditional lasers generate light by exciting an electron within an atom’s outer shell, which then emits a single photon as it transitions, or returns to its resting energy level. Different atoms produce different frequencies of light based on the fixed amount of energy it takes to excite one electron. However, lasers fall short in a particular portion of the spectrum between infrared and microwave known as the terahertz gap.

“The problem with existing laser technology,” Dr. Bulcha said, “is that no materials have the right properties to produce a terahertz wave.”

This tiny laser capitalizes on quantum-scale effects of materials just tens of atoms across to generate a high-powered beam in a portion of the spectrum where traditional lasers fade in strength/NASA/Michael Giunto

Electromagnetic oscillators like those that generate radio or microwave frequencies produce low-powered terahertz pulses by using a series of amplifiers and frequency multipliers to extend the signal into the terahertz range. However, this process consumes a lot of voltage, and the materials used to amplify and multiply the pulse have limited efficiency. This means they lose power as they approach the terahertz frequencies.

From the other side of the terahertz gap, optical lasers pump energy into a gas to generate photons. However, high-powered, terahertz-band lasers are large, power hungry, and not suitable for space exploration purposes where mass and power are limited, particularly hand-held or Small Satellite applications. The power of the pulse also drops as optical lasers push towards the terahertz bandwidths.

To fill that gap, Dr. Bulcha’s team is developing quantum cascade lasers that produce photons from each electron transition event by taking advantage of some unique, quantum-scale physics of materials layered just a few atoms thick.

In these materials, a laser emits photons in a specific frequency determined by the thickness of alternating layers of semiconductors rather than the elements in the material. In quantum physics, the thin layers increase the chance that a photon can then tunnel through to the next layer instead of bouncing off the barrier. Once there, it excites additional photons. Using a generator material with 80 to 100 layers, totaling less than 10 to 15 microns thick, the team’s source creates a cascade of terahertz-energy photons.

This cascade consumes less voltage to generate a stable, high-powered light. One drawback of this technology is its beam spreads out in a large angle, dissipating quickly over short distances. Using innovative technology supported by Goddard’s Internal Research and Development (IRAD) funding, Dr. Bulcha and his team integrated the laser on a waveguide with a thin optical antenna to tighten the beam. The integrated laser and waveguide unit reduces this dissipation by 50% in a package smaller than a quarter.

He hopes to continue the work to make a flight-ready laser for NASA’s Artemis program.

The laser’s low size and power consumption allow it to fit in a 1U CubeSat, about the size of a teapot, along with the spectrometer hardware, processor, and power supply. It could also power a handheld device for use by future explorers on the Moon, Mars, and beyond.

Twitter saga continues after Zatko revelations; Parag ridicules false claims

Twitter’s Indian-origin CEO Parag Agrawal has lashed out at the company’s former security chief Peiter ‘Mudge’ Zatko terming his claims false and riddled with inaccuracies.

Reacting to ongoing saga over bots controversy with Zatko, who was fired in January, he said, “We are reviewing the redacted claims that have been published, but what we’ve seen so far is a false narrative that is riddled with inconsistencies and inaccuracies, and presented without important context.”

Zatko claimed that Twitter lied about the actual number of bots on its platform and misled federal regulators about users’ data safety, substantiating Tesla CEO Elon Musk’s takeover bid and withdrawal from the move.

“There are news reports outlining claims about Twitter’s privacy, security, and data protection practices that were made by Mudge Zatko, a former Twitter executive who was terminated in January 2022 for ineffective leadership and poor performance,” Agrawal said in an internal message sent to the staff.

Zatko also alleged that the Indian government forced the micro-blogging platform to hire a “government agent” and allow him access to users’ sensitive data, a claim that was trashed by Twitter.

Agrawal said that this is frustrating and confusing to read, “given Mudge was accountable for many aspects of this work that he is now inaccurately portraying more than six months after his termination”.

“But none of this takes away from the important work you have done and continue to do to safeguard the privacy and security of our customers and their data,” he told employees.

Zatko’s disclosure before SEC

According to Zatko’s disclosure before the US Securities and Exchange Commission (SEC), Twitter has “major security problems that pose a threat to its own users’ personal information, to company shareholders, to national security, and to democracy”.

Agrawal said that given the spotlight on Twitter, “we can assume that we will continue to see more headlines in the coming days — this will only make our work harder. We will pursue all paths to defend our integrity as a company and set the record straight.”

Emotional AI and gen Z: The attitude towards new technology and its concerns

Artificial intelligence (AI) governs all that come under “smart technology” today. From self-driving cars to voice assistants on our smartphones, AI has ubiquitous presence in our daily lives. Yet, it had been lacking a crucial feature: the ability to engage human emotions.

The scenario is quickly changing, however. Algorithms that can sense human emotions and interact with them are quickly becoming mainstream as they come embedded in existing systems. Known as “emotional AI,” the new technology achieves this feat through a process called “non-conscious data collection”(NCDC), in which the algorithm collects data on the user’s heart and respiration rate, voice tones, micro-facial expressions, gestures, etc. to analyze their moods and personalize its response accordingly.

However, the unregulated nature of this technology has raised many ethical and privacy concerns. In particular, it is important to know the attitude of the current largest demographic towards NCDC, namely Generation Z (Gen Z). Making up 36% of the global workforce, Gen Z is likely to be the most vulnerable to emotional AI. Moreover, AI algorithms are rarely calibrated for socio-cultural differences, making their implementation all the more concerning.

We found that being male and having high income were both correlated with having positive attitudes towards accepting NCDC. In addition, business majors were more likely to be more tolerant towards NCDC,” highlights Prof. Ghotbi. Cultural factors, such as region and religion, were also found to have an impact, with people from Southeast Asia, Muslims, and Christians reporting concern over NCDC.

Research by Team:

Our study clearly demonstrates that sociocultural factors deeply impact the acceptance of new technology. This means that theories based on the traditional technology acceptance model by Davis, which does not account for these factors, need to be modified,” explains Prof. Mantello.

The study addressed this issue by proposing a “mind-sponge” model-based approach that accounts for socio-cultural factors in assessing the acceptance of AI technology. Additionally, it also suggested a thorough understanding of the potential risks of the technology to enable effective governance and ethical design. “Public outreach initiatives are needed to sensitize the population about the ethical implications of NCDC. These initiatives need to consider the demographic and cultural differences to be successful,” says Dr. Nguyen.

Overall, the study highlights the extent to which emotional AI and NCDC technologies are already present in our lives and the privacy trade-offs they imply for the younger generation. Thus, there is an urgent need to make sure that these technologies serve both individuals and societies well.

How to detect nanoplastics present in air

Large pieces of plastic can break down into nanosized particles that often find their way into the soil and water. Perhaps less well known is that they can also float in the air. It’s unclear how nanoplastics impact human health, but animal studies suggest they’re potentially harmful. As a step toward better understanding the prevalence of airborne nanoplastics, researchers have developed a sensor that detects these particles and determines the types, amounts and sizes of the plastics using colorful carbon dot films.

The researchers will present their results today at the fall meeting of the American Chemical Society (ACS). ACS Fall 2022 is a hybrid meeting being held virtually and in-person Aug. 21–25, with on-demand access available Aug. 26–Sept. 9. The meeting features nearly 11,000 presentations on a wide range of science topics.

“Nanoplastics are a major concern if they’re in the air that you breathe, getting into your lungs and potentially causing health problems,” says Raz Jelinek, Ph.D., the project’s principal investigator. “A simple, inexpensive detector like ours could have huge implications, and someday alert people to the presence of nanoplastics in the air, allowing them to take action.”

Of the many well-documented risks of dirty air, one potential danger is lesser known: chronic kidney disease. Learn about new research and how to protect yourself. CREDIT: Michigan Medicine

Millions of tons of plastic are produced and thrown away each year. Some plastic materials slowly erode while they’re being used or after being disposed of, polluting the surrounding environment with micro- and nanosized particles. Nanoplastics are so small — generally less than 1-µm wide — and light that they can even float in the air, where people can then unknowingly breathe them in. Animal studies suggest that ingesting and inhaling these nanoparticles may have damaging effects. Therefore, it could be helpful to know the levels of airborne nanoplastic pollution in the environment.

Previously, Jelinek’s research team at Ben-Gurion University of the Negev developed an electronic nose or “e-nose” for monitoring the presence of bacteria by adsorbing and sensing the unique combination of gas vapor molecules that they release. The researchers wanted to see if this same carbon-dot-based technology could be adapted to create a sensitive nanoplastic sensor for continuous environmental monitoring.

Carbon dots are formed when a starting material that contains lots of carbon, such as sugar or other organic matter, is heated at a moderate temperature for several hours, says Jelinek. This process can even be done using a conventional microwave. During heating, the carbon-containing material develops into colorful, and often fluorescent, nanometer-size particles called “carbon dots.” And by changing the starting material, the carbon dots can have different surface properties that can attract various molecules.

To create the bacterial e-nose, the team spread thin layers of different carbon dots onto tiny electrodes, each the size of a fingernail. They used interdigitated electrodes, which have two sides with interspersed comb-like structures. Between the two sides, an electric field develops, and the stored charge is called capacitance. “When something happens to the carbon dots — either they adsorb gas molecules or nanoplastic pieces — then there is a change of capacitance, which we can easily measure,” says Jelinek.

Then the researchers tested a proof-of-concept sensor for nanoplastics in the air, choosing carbon dots that would adsorb common types of plastic — polystyrene, polypropylene and poly(methyl methacrylate). In experiments, nanoscale plastic particles were aerosolized, making them float in the air. And when electrodes coated with carbon-dot films were exposed to the airborne nanoplastics, the team observed signals that were different for each type of material, says Jelinek. Because the number of nanoplastics in the air affects the intensity of the signal generated, Jelinek adds that currently, the sensor can report the amount of particles from a certain plastic type either above or below a predetermined concentration threshold. Additionally, when polystyrene particles in three sizes — 100-nm wide, 200-nm wide and 300-nm wide — were aerosolized, the sensor’s signal intensity was directly related to the particles’ size.

The team’s next step is to see if their system can distinguish the types of plastic in mixtures of nanoparticles. Just as the combination of carbon dot films in the bacterial e-nose distinguished between gases with differing polarities, Jelinek says it’s likely that they could tweak the nanoplastic sensor to differentiate between additional types and sizes of nanoplastics. The capability to detect different plastics based on their surface properties would make nanoplastic sensors useful for tracking these particles in schools, office buildings, homes and outdoors, he says.

This tiny sensor detects medicine levels from sweat drop in 30 seconds

Lithium can alleviate the symptoms of bipolar disorder and depression — if taken in just the right amount. Too little won’t work, while too much can bring on dangerous side effects. To precisely monitor the amount of this medication in the body, patients must undergo invasive blood tests. But today, scientists report the invention of a tiny sensor that detects lithium levels from sweat on the surface of a fingertip in as little as 30 seconds, without a trip to the clinic.

The researchers will present their results today at the fall meeting of the American Chemical Society (ACS). ACS Fall 2022 is a hybrid meeting being held virtually and in-person Aug. 21–25, with on-demand access available Aug. 26–Sept. 9. The meeting features nearly 11,000 presentations on a wide range of science topics.

Not only must lithium be taken at a certain dosage, but patients often struggle to take it as prescribed and may miss pills. So, when the medication doesn’t appear to be working, health care providers need to know how much medication the patient is actually swallowing. But current options for monitoring have significant drawbacks. For example, blood draws produce accurate results, but they are invasive and time consuming. Pill counters, meanwhile, don’t directly measure the intake of the medication. To address these limitations, the team turned to another body fluid.

“Although it may not be visible, the human body constantly produces sweat, often only in very small amounts,” says Shuyu Lin, Ph.D., a postgraduate student researcher who is co-presenting the work with graduate student Jialun Zhu at the meeting. “Small molecules derived from medication, including lithium, show up in that sweat. We recognized this as an opportunity to develop a new type of sensor that would detect these molecules.”

“Through a single touch, our new device can obtain clinically useful molecular-level information about what is circulating in the body,” says Sam Emaminejad, Ph.D., the project’s principal investigator, who is at the University of California, Los Angeles (UCLA). “We already interact with a lot of touch-based electronics, such as smart phones and keyboards, so this sensor could integrate seamlessly into daily life.”

Devising a sensor to detect lithium presented some technical challenges, however. Sweat is generally only present in minute amounts, but the electrochemical sensing needed to detect charged particles of lithium required an aqueous, or watery, environment. To provide it, the team engineered a water-based gel containing glycerol. This extra ingredient prevented the gel from drying out and created a controlled environment for the electronic portion of the sensor.

To trap the lithium ions after they traversed the gel, the team used an ion-selective electrode. The accumulating ions generate a difference in electrical potential compared with a reference electrode. The researchers used this difference to infer the concentration of lithium present in sweat. Together, these components comprise a tiny, rectangular sensor that is smaller than the head of a thumbtack and can detect lithium in about 30 seconds. The sensor is still in the preliminary testing phase, but ultimately, the researchers envision incorporating it into a larger, yet-to-be designed system that provides visual feedback to the provider or the patient.

After characterizing the sensor using an artificial fingertip, the team recruited real people to test it, including one person on a lithium treatment regimen. The researchers recorded this person’s lithium levels before and after taking the medication. They found that these measurements fell close to those derived from saliva, which prior research has shown to accurately measure lithium levels. In the future, the researchers plan to study the effects of lotion and other skin products on the sensor’s readings.

This technology also has applications beyond lithium. Emaminejad is developing similar touch-based sensors to monitor alcohol and acetaminophen, a painkiller also known as Tylenol®, while also exploring the possibility of detecting other substances. The complete sensing systems could include additional features, such as encryption secured by a fingerprint, or, for substances prone to abuse, a robotic dispensing system that releases medication only if the patient has a low level in their bloodstream.

The researchers acknowledge support and funding from the National Science Foundation, Brain and Behavior Foundation, Precise Advanced Technologies and Health Systems for Underserved Populations and the UCLA Henry Samueli School of Engineering and Applied Sciences.

ACS Fall 2022 will be a vaccination-required and mask-recommended event for all attendees, exhibitors, vendors and ACS staff who plan to participate in-person in Chicago. For detailed information about the requirement and all ACS safety measures, please visit the ACS website.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.