Are we alone in the universe? JPL’s OWLS, other tools to help search for life in deep space

A team at the Lab has invented new technologies that could be used by future missions to analyze liquid samples from watery worlds and look for signs of alien life.

Are we alone in the universe? An answer to that age-old question has seemed tantalizingly within reach since the discovery of ice-encrusted moons in our solar system with potentially habitable subsurface oceans. But looking for evidence of life in a frigid sea hundreds of millions of miles away poses tremendous challenges. The science equipment used must be exquisitely complex yet capable of withstanding intense radiation and cryogenic temperatures. What’s more, the instruments must be able to take diverse, independent, complementary measurements that together could produce scientifically defensible proof of life.

To address some of the difficulties that future life-detection missions might encounter, a team at NASA’s Jet Propulsion Laboratory in Southern California has developed OWLS, a powerful suite of science instruments unlike any other. Short for Oceans Worlds Life Surveyor, OWLS is designed to ingest and analyze liquid samples. It features eight instruments – all automated – that, in a lab on Earth, would require the work of several dozen people.

JPL’s OWLS parked in front of California’s Mono Lake

JPL’s OWLS combines powerful chemical-analysis instruments that look for the building blocks of life with microscopes that search for cells. This version of OWLS would be miniaturized and customized for use on future missions. Credit: NASA/JPL-Caltech

One vision for OWLS is to use it to analyze frozen water from a vapor plume erupting from Saturn’s moon Enceladus. “How do you take a sprinkling of ice a billion miles from Earth and determine – in the one chance you’ve got, while everyone on Earth is waiting with bated breath – whether there’s evidence of life?” said Peter Willis, the project’s co-principal investigator and science lead. “We wanted to create the most powerful instrument system you could design for that situation to look for both chemical and biological signs of life.”

OWLS has been funded by JPL Next, a technology accelerator program run by the Lab’s Office of Space Technology. In June, after a half-decade of work, the project team tested its equipment – currently the size of a few filing cabinets – on the salty waters of Mono Lake in California’s Eastern Sierra. OWLS found chemical and cellular evidence of life, using its built-in software to identify that evidence without human intervention.

“We have demonstrated the first generation of the OWLS suite,” Willis said. “The next step is to customize and miniaturize it for specific mission scenarios.”

Challenges, Solutions

A key difficulty the OWLS team faced was how to process liquid samples in space. On Earth, scientists can rely on gravity, a reasonable lab temperature, and air pressure to keep samples in place, but those conditions don’t exist on a spacecraft hurtling through the solar system or on the surface of a frozen moon. So the team designed two instruments that can extract a liquid sample and process it in the conditions of space.

Since it’s not clear what form life might take on an ocean world, OWLS also needed to include the broadest possible array of instruments, capable of measuring a size range from single molecules to microorganisms. To that end, the project joined two subsystems: one that employs a variety of chemical analysis techniques using multiple instruments, and one with several microscopes to examine visual clues.

Water ice and vapor are seen spraying from Saturn’s frozen moon Enceladus, which hosts a hidden subsurface ocean, in this image captured by NASA’s Cassini mission during a 2010 flyby. OWLS is designed to ingest and analyze liquid samples from such plumes. Credit:NASA/JPL/Space Science Institute 

Full Image Details

OWLS’ microscope system would be the first in space capable of imaging cells. Developed in conjunction with scientists at Portland State University in Oregon, it combines a digital holographic microscope, which can identify cells and motion throughout the volume of a sample, with two fluorescent imagers, which use dyes to observe chemical content and cellular structures. Together, they provide overlapping views at a resolution of less than a single micron, or about 0.00004 inches.

Dubbed Extant Life Volumetric Imaging System (ELVIS), the microscope subsystem has no moving parts – a rarity. And it uses machine-learning algorithms to both home in on lifelike movement and detect objects lit up by fluorescent molecules, whether naturally occurring in living organisms or as added dyes bound to parts of cells.

“It’s like looking for a needle in a haystack without having to pick up and examine every single piece of hay,” said co-principal investigator Chris Lindensmith, who leads the microscope team. “We’re basically grabbing big armfuls of hay and saying, ‘Oh, there’s needles here, here, and here.’”

To examine much tinier forms of evidence, OWLS uses its Organic Capillary Electrophoresis Analysis System (OCEANS), which essentially pressure-cooks liquid samples and feeds them to instruments that search for the chemical building blocks of life: all varieties of amino acids, as well as fatty acids and organic compounds. The system is so sensitive, it can even detect unknown forms of carbon. Willis, who led development of OCEANS, compares it to a shark that can smell just one molecule of blood in a billion molecules of water – and also tell the blood type. It would be only the second instrument system to perform liquid chemical analysis in space, after the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on NASA’s Phoenix Mars Lander.

OCEANS uses a technique called capillary electrophoresis – basically, running an electric current through a sample to separate it into its components. The sample is then routed to three types of detectors, including a mass spectrometer, the most powerful tool for identifying organic compounds.

Sending It Home

These subsystems produce massive amounts of data, just an estimated 0.0001% of which could be sent back to faraway Earth because of data transmission rates that are more limited than dial-up internet from the 1980s. So OWLS has been designed with what’s called “onboard science instrument autonomy.” Using algorithms, computers would analyze, summarize, prioritize, and select only the most interesting data to be sent home while also offering a “manifest” of information still on board.

“We’re starting to ask questions now that necessitate more sophisticated instruments,” said Lukas Mandrake, the project’s instrument autonomy system engineer. “Are some of these other planets habitable? Is there defensible scientific evidence for life rather than a hint that it might be there? That requires instruments that take a lot of data, and that’s what OWLS and its science autonomy is set up to accomplish.”

Also Read:

NASA-Built ‘Weather Sensors’ Capture Vital Data on Hurricane Ian

NASA’s Perseverance Rover Investigates Geologically Rich Mars Terrain; Collects ‘Wildcat Ridge’, analyzes with SHERLOC instrument

No Picnic in the Clouds! It’s JPL aerobot

NASA Sets TV Coverage for Crewed Soyuz Mission to Space Station[Live schedule details]

NASA will provide live coverage of key events as a NASA astronaut and two cosmonauts launch and dock to the International Space Station on Wednesday, Sept. 21.

NASA astronaut Frank Rubio and Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin will launch aboard the Soyuz MS-22 spacecraft from the Baikonur Cosmodrome in Kazakhstan at 9:54 a.m. EDT Wednesday, Sept. 21 (6:54 p.m. Baikonur time). Coverage will begin at 9 a.m. on NASA Television’s Public Channel, the NASA app, and on the agency’s website.

NASA also will air continuous coverage of an Artemis I tanking test on NASA TV’s Media Channel beginning at 7:15 a.m.

At the Baikonur Cosmodrome in Kazakhstan, NASA astronaut Frank Rubio performs preflight checkouts in the Soyuz MS-22 spacecraft. Rubio is scheduled to launch with crewmates Roscosmos cosmonaut Sergey Prokopyev and Dmitri Petelin Sept. 21 for a six-month mission on the International Space Station.
Credits: NASA/Victor Zelentsov

Soyuz MS-22 launch and key events as well of coverage of the Artemis I tanking test will be available to watch online at:

https://www.nasa.gov/live

After a two-orbit, three-hour journey, the Soyuz will dock to the space station’s Rassvet module at 1:11 p.m. About two hours after docking, hatches between the Soyuz and the station will open and the crew members will greet each other.

Once aboard station, the trio will join Expedition 67 Commander Oleg Artemyev, cosmonauts Denis Matveev and Sergey Korsakov of Roscosmos, as well as NASA astronauts Bob Hines, Kjell Lindgren, and Jessica Watkins, and ESA (European Space Agency) astronaut Samantha Cristoforetti. Rubio, Prokopyev, and Petelin will spend six months aboard the orbital laboratory.

This will be Prokopyev’s second flight into space and the first for Rubio and Petelin.

Mission coverage is as follows (all times Eastern):

Wednesday, Sept. 21

9 a.m. – Coverage begins on NASA TV’s Public Channel for 9:54 a.m. launch.

12:15 p.m. – Coverage begins on NASA TV’s Public Channel for 1:11 p.m. docking.

3:30 p.m. – Coverage begins on NASA TV for hatch opening and welcome remarks.

Where do high-energy particles that endanger satellites, astronauts, airplanes come from?

For decades, scientists have been trying to solve a vexing problem about the weather in outer space: At unpredictable times, high-energy particles bombard the earth and objects outside the earth’s atmosphere with radiation that can endanger the lives of astronauts and destroy satellites’ electronic equipment. These flare-ups can even trigger showers of radiation strong enough to reach passengers in airplanes flying over the North Pole. Despite scientists’ best efforts, a clear pattern of how and when flare-ups will occur has remained enduringly difficult to identify.

This week, in a paper in The Astrophysical Journal Letters, authors Luca Comisso and Lorenzo Sironi of Columbia’s Department of Astronomy and the Astrophysics Laboratory, have for the first time used supercomputers to simulate when and how high-energy particles are born in turbulent environments like that on the atmosphere of the sun. This new research paves the way for more accurate predictions of when dangerous bursts of these particles will occur.

“This exciting new research will allow us to better predict the origin of solar energetic particles and improve forecasting models of space weather events, a key goal of NASA and other space agencies and governments around the globe,” Comisso said. Within the next couple of years, he added, NASA’s Parker Solar Probe, the closest spacecraft to the sun, may be able to validate the paper’s findings by directly observing the predicted distribution of high-energy particles that are generated in the sun’s outer atmosphere.

NASA/Photo: Nasa.gov

In their paper, “Ion and Electron Acceleration in Fully Kinetic Plasma Turbulence,” Comisso and Sironi demonstrate that magnetic fields in the outer atmosphere of the sun can accelerate ions and electrons up to velocities close to the speed of light. The sun and other stars’ outer atmosphere consist of particles in a plasma state, a highly turbulent state distinct from liquid, gas, and solid states. Scientists have long believed that the sun’s plasma generates high-energy particles. But particles in plasma move so erratically and unpredictably that they have until now not been able to fully demonstrate how and when this occurs.

Using supercomputers at Columbia, NASA, and the National Energy Research Scientific Computing Center, Comisso and Sironi created computer simulations that show the exact movements of electrons and ions in the sun’s plasma. These simulations mimic the atmospheric conditions on the sun, and provide the most extensive data gathered to-date on how and when high-energy particles will form.

The research provides answers to questions that scientists have been investigating for at least 70 years: In 1949, the physicist Enrico Fermi began to investigate magnetic fields in outer space  as a potential source of the high-energy particles (which he called cosmic rays) that were observed entering the earth’s atmosphere. Since then, scientists have suspected that the sun’s plasma is a major source of these particles, but definitively proving it has been difficult.

Aldrin walks on the surface of the Moon during Apollo 11(NASA)

Comisso and Sironi’s research, which was conducted with support from NASA and the National Science Foundation, has implications far beyond our own solar system. The vast majority of the observable matter in the universe is in a plasma state. Understanding how some of the particles that constitute plasma can be accelerated to high-energy levels is an important new research area since energetic particles are routinely observed not just around the sun but also in other environments across the universe, including the surroundings of black holes and neutron stars.

While Comisso and Sironi’s new paper focuses on the sun, further simulations could be run in other contexts to understand how and when distant stars, black holes, and other entities in the universe will generate their own bursts of energy.

“Our results center on the sun but can also be seen as a starting point to better understanding how high-energy particles are produced in more distant stars and around black holes,” Comisso said. “We’ve only scratched the surface of what supercomputer simulations can tell us about how these particles are born across the universe.”

 Artemis I Launch Update: Repair Work Underway, Preparations Continue for Next Launch

Engineers are making progress repairing the area where a liquid hydrogen leak was detected during the Artemis I launch attempt Sept. 3, and NASA is preserving options for the next launch opportunity as early as Friday, Sept. 23. 

Technicians constructed a tent-like enclosure around the work area to protect the hardware and teams from weather and other environmental conditions at Launch Pad 39B. They have disconnected the ground- and rocket-side plates on the interface, called a quick disconnect, for the liquid hydrogen fuel feed line, performed initial inspections, and began replacing two seals – one surrounding the 8-inch line used to fill and drain liquid hydrogen from the core stage, and another surrounding the 4-inch bleed line used to redirect some of the propellant during tanking operations. The SLS rocket and Orion spacecraft are in good condition while remaining at the launch pad. 

Once the work is complete, engineers will reconnect the plates and perform initial tests to evaluate the new seals. Teams will check the new seals under cryogenic, or supercold, conditions no earlier than Sept. 17 in which the rocket’s core stage and interim cryogenic propulsion stage will be loaded with liquid oxygen and liquid hydrogen to validate the repair under the conditions it would experience on launch day. Engineers are in the process of developing a full plan for the checkouts. 

Artemis I logo/NASA

NASA has submitted a request to the Eastern Range for an extension of the current testing requirement for the flight termination system. NASA is respecting the range’s processes for review of the request, and the agency continues to provide detailed information to support a range decision.  

In the meantime, NASA is instructing the Artemis team to move forward with all preparations required for testing, followed by launch, including preparations to ensure adequate supplies of propellants and gases used in tanking operations, as well as flight operations planning for the mission. NASA has requested the following launch opportunities: 

  • Sept 23: Two-hour launch window opens at 6:47 a.m. EDT; landing on Oct. 18 
  • Sept. 27: 70-minute launch window opens at 11:37 a.m.; landing on Nov. 5 

NASA’s teams internally are preparing to support additional dates in the event flexibility is required. The agency will evaluate and adjust launch opportunities and alternate dates based on progress at the pad and to align with other planned activities, including DART’s planned impact with an asteroid, the west coast launch of a government payload, and the launch of Crew-5 to the International Space Station. 

NASA/Photo: Nasa.gov

Listen to a replay of today’s media teleconference on the status of the Artemis I mission. Artemis I is an uncrewed flight test to provide a foundation for human exploration in deep space and demonstrate our commitment and capability to extend human existence to the Moon and beyond.  

NASA Hosts National Space Council Meeting, Vice President Kamala Harris Chairs Event

Vice President Kamala Harris highlighted the importance of climate, human spaceflight, and STEM education during the Biden-Harris Administration’s second National Space Council meeting Friday, held at NASA’s Johnson Space Center in Houston.

“For generations, with our allies and partners around the globe, America has led our world in the exploration and use of space,” said Harris. “Our leadership has been guided by a set of fundamental principles – cooperation, security, ambition, and public trust – which is the recognition, of course, that space can and must be protected for the benefit of all people.

There is so much we still don’t know and so much we still haven’t done – space remains a place of undiscovered and unrealized opportunity. Our test and our responsibility is to work together to guide humanity forward into this new frontier and to make real the incredible potential of space for all people.”

National Space Council Meeting led by Chairwoman, Vice President Kamala Harris. Photo Date: September 9, 2022. Location: Building 9NW, SVMF. Photographer: Robert Markowitz.

For more than 50 years, NASA satellites have provided open-source and publicly available data on Earth’s land, water, temperature, weather, and climate. Improving access to key climate information is a priority for the agency. Building on his previous announcement, NASA Administrator Bill Nelson released the first concept, and shared a new video for the Earth Information Center. The center will allow the public to see how the Earth is changing and guide decision makers to mitigate, adapt, and respond to climate change.

“Just like we use mission control to monitor operations during spaceflight, we’re embarking on this effort to monitor conditions here on our home planet, and it will be available to everyone in an easy-to-access format,” Nelson said.

Planning for the Earth Information Center is underway with the initial phase providing an interactive visual display of imagery and data from NASA and other government agencies. NASA Headquarters plans to house this initial interactive display with goals to expand in person and virtual access over the next five years.

The Vice President also underscored the important research conducted on the International Space Station that will enable long duration stays on the Moon and future human missions to Mars, in addition to benefits to life here on Earth.

NASA/Photo: Nasa.gov

NASA uses the International Space Station to conduct critical research on the risks associated with future Mars missions – space radiation, isolation, and distance from Earth, just to name a few. It’s also a testbed to develop the technologies we’ll need for long duration stays on the Moon, where we will build an Artemis Base Camp on the surface and Gateway outpost in lunar orbit,” Nelson said. “Research on the space station demonstrates that the benefits of microgravity are not just for discovery. We also develop new technologies that improve life on Earth, like treatments for cancer.”

In conjunction with the meeting, NASA announced a new Space Grant K-12 Inclusiveness and Diversity in STEM (SG KIDS) opportunity that will award more than $4 million to institutions across the U.S. to help bring the excitement of NASA and STEM to traditionally underserved and underrepresented groups of middle and high school students. The announcement is a part of a broader set of commitments made by public, private, and philanthropic partners announced by the Vice President to help in the recruitment and development of the next generation of the space workforce.

SG KIDS also addresses the White House Executive Order on Advancing Racial Equity and Support for Underserved Communities Through the Federal Government, as well as NASA Administrator Bill Nelson’s focus on providing authentic STEM opportunities to K-12 students.

While at NASA’s Johnson Space Center, Vice President Harris toured the agency’s mission control with Nelson and Johnson Center Director Vanessa Wyche. The Vice President also spoke with NASA astronauts Bob Hines, Kjell Lindgren, and Jessica Watkins, living and working aboard the International Space Station about how their research benefits life on Earth, supports long duration space flight, and protects our planet.

The Vice President also received a tour of the Space Vehicle Mockup Facility (SVMF), where space flight crews and their support personnel receive world class training on high-fidelity hardware for real-time mission support. The SVMF consists of space station, Orion, Commercial vehicle mockups, part-task trainers and rack interfaces, a Precision Air Bearing Floor, and a Partial Gravity Simulator.

A recording of the full National Space Council meeting is available online at:

https://go.nasa.gov/3eEGxEW

Apply now to experience the Launch of NASA’s SpaceX Crew-5 Mission[Full details]

Digital content creators are invited to register to attend the launch of the fifth SpaceX Crew Dragon spacecraft and Falcon 9 rocket that will carry astronauts to the International Space Station for a science expedition mission. This mission is part of NASA’s Commercial Crew Program.

The earliest targeted launch date for the agency’s SpaceX Crew-5 mission is Oct. 3, from Kennedy’s Launch Complex 39A. The launch will carry NASA astronauts Nicole Mann, commander; Josh Cassada, pilot; and mission specialists Koichi Wakata, of JAXA (Japan Aerospace Exploration Agency), and Roscosmos cosmonaut Anna Kikina.

If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to be on the front line to see and share the #Crew5 mission launch.

A maximum of 35 social media users will be selected to attend this two-day event and will be given access similar to news media.

NASA Social participants will have the opportunity to:

  • View a launch of the SpaceX Falcon 9 rocket
  • Tour NASA facilities at Kennedy Space Center
  • Meet and interact with Crew-5 subject matter experts
  • Meet fellow space enthusiasts who are active on social media

NASA Social registration for the Crew-5 launch opens on August 31 and the deadline to apply is September 6 at 3 p.m. EDT. All social applications will be considered on a case-by-case basis.


 

APPLY NOW


Do I need to have a social media account to register?
Yes. This event is designed for people who:

  • Actively use multiple social networking platforms and tools to disseminate information to a unique audience.
  • Regularly produce new content that features multimedia elements.
  • Have the potential to reach a large number of people using digital platforms.
  • Reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.
  • Must have an established history of posting content on social media platforms.
  • Have previous postings that are highly visible, respected and widely recognized.

Users on all social networks are encouraged to use the hashtag #NASASocial, and #Crew5.  Updates and information about the event will be shared on Twitter via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram.

How do I register?
Registration for this event opens August 31 and closes at 3 p.m. EDT on September 6. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis.

Can I register if I am not a U.S. citizen?
Because of the security deadlines, registration is limited to U.S. citizens. If you have a valid permanent resident card you will be processed as a U.S. citizen.

When will I know if I am selected?
After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the first notifications on September 13 and waitlist notifications on September 14.

What are NASA Social credentials?
All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria.

If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here.

What are the registration requirements?
Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodation, food, and other amenities.

Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly.

Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas.

IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements.

All registrants must be at least 18 years old.

Photo: Nasa.gov

What if the launch date changes?
Hundreds of different factors can cause a scheduled launch date to change multiple times. The launch date will not be official until after the Flight Readiness Review. If the launch date changes prior to then, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email.

If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours.

NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible.

What if I cannot come to the Kennedy Space Center?
If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation using the #NASASocial hashtag on Twitter. You can watch the launch on NASA Television or www.nasa.gov/live. NASA will provide regular launch and mission updates on @NASA@NASAKennedy, and @Commercial_Crew.

What are the safety protocols for this event?
COVID-19 safety protocols for this event will be communicated closer to the date of the event.

If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! Check back here for updates.