The highest judicial authority today issued a stern rebuke to the State Bank of India (SBI) concerning its handling of information regarding electoral bonds, a program enabling discreet donations to political parties by individuals and entities.
Following the court’s previous decision to nullify the electoral bonds scheme, SBI was instructed to divulge comprehensive data regarding donations spanning the past half-decade.
Responding to a plea from the Election Commission, the Supreme Court pointed out deficiencies in the data furnished by SBI. Presiding over a five-judge panel, Chief Justice DY Chandrachud directed SBI to not only provide existing details but also disclose the electoral bond numbers.
Chief Justice Chandrachud wasted no time in highlighting the absence of bond numbers, querying the representation for the State Bank of India at the onset of the session.
In a notification served to SBI, the Supreme Court bench requested clarification regarding this oversight, scheduling a follow-up hearing for March 18. The inclusion of electoral bond numbers is deemed crucial for establishing connections between donors and political entities.
Electoral bonds were introduced in 2018 by the BJP administration as a measure to substitute cash contributions, purportedly enhancing transparency in political funding.
Last month, the Supreme Court invalidated the program, citing constitutional concerns and the potential for quid pro quo arrangements. Furthermore, the court urged SBI to furnish the Election Commission with all pertinent details regarding bond transactions.
In its submission, the Election Commission reiterated the court’s directive to retain copies of documents submitted during the proceedings, emphasizing the importance of maintaining records at the commission’s office.
The Election Commission clarified that it had not retained any copies of the documents and requested their return to facilitate compliance with the court’s instructions.
The mission’s first two samples of regolith – broken rock and dust – could help scientists better understand the Red Planet and engineers prepare for future missions there.
NASA’s Perseverance rover snagged two new samples from the Martian surface on Dec. 2 and 6. But unlike the 15 rock cores collected to date, these newest samples came from a pile of wind-blown sand and dust similar to but smaller than a dune. Now contained in special metal collection tubes, one of these two samples will be considered for deposit on the Martian surface sometime this month as part of the Mars Sample Return campaign.
Scientists want to study Martian samples with powerful lab equipment on Earth to search for signs of ancient microbial life and to better understand the processes that have shaped the surface of Mars. Most of the samples will be rock; however, researchers also want to examine regolith – broken rock and dust – not only because of what it can teach us about geological processes and the environment on Mars, but also to mitigate some of the challenges astronauts will face on the Red Planet. Regolith can affect everything from spacesuits to solar panels, so it’s just as interesting to engineers as it is to scientists.
Two holes are left in the Martian surface after NASA’s Perseverance rover used a specialized drill bit to collect the mission’s first samples of regolith on Dec. 2 and 6, 2022. Credit: NASA/JPL-Caltech
As with rock cores, these latest samples were collected using a drill on the end of the rover’s robotic arm. But for the regolith samples, Perseverance used a drill bit that looks like a spike with small holes on one end to gather loose material.
Engineers designed the special drill bit after extensive testing with simulated regolith developed by JPL. Called Mojave Mars Simulant, it’s made of volcanic rock crushed into a variety of particle sizes, from fine dust to coarse pebbles, based on images of regolith and data collected by previous Mars missions.
NASA’s Perseverance Mars rover took this image of regolith – broken rock and dust – on Dec. 2, 2022. This regolith will be considered for deposit on the Martian surface as part of the Mars Sample Return campaign. Credit: NASA/JPL-Caltech
“Everything we learn about the size, shape, and chemistry of regolith grains helps us design and test better tools for future missions,” said Iona Tirona of NASA’s Jet Propulsion Laboratory in Southern California, which leads the Perseverance mission. Tirona was the activity lead for operations to collect the recent regolith sample. “The more data we have, the more realistic our simulants can be.”
The Challenge of Dust
Studying regolith up close could help engineers design future Mars missions – as well as the equipment used by future Martian astronauts. Dust and regolith can damage spacecraft and science instruments alike. Regolith can jam sensitive parts and slow down rovers on the surface. The grains could also pose unique challenges to astronauts: Lunar regolith was discovered to be sharp enough to tear microscopic holes in spacesuits during the Apollo missions to the Moon.
Regolith could be helpful if packed against a habitat to shield astronauts from radiation, but it also contains risks: The Martian surface contains perchlorate, a toxic chemical that could threaten the health of astronauts if large amounts were accidentally inhaled or ingested.
“If we have a more permanent presence on Mars, we need to know how the dust and regolith will interact with our spacecraft and habitats,” said Perseverance team member Erin Gibbons, a McGill University doctoral candidate who uses Mars regolith simulants as part of her work with the rover’s rock-vaporizing laser, called SuperCam.
“Some of those dust grains could be as fine as cigarette smoke, and could get into an astronaut’s breathing apparatus,” added Gibbons, who was previously part of a NASA program studying human-robot exploration of Mars. “We want a fuller picture of which materials would be harmful to our explorers, whether they’re human or robotic.”
Besides answering questions about health and safety hazards, a tube of Martian regolith could inspire scientific wonder. Looking at it under a microscope would reveal a kaleidoscope of grains in different shapes and colors. Each one would be like a jigsaw puzzle piece, all of them joined together by wind and water over billions of years.
“There are so many different materials mixed into Martian regolith,” said Libby Hausrath of University of Nevada, Las Vegas, one of Perseverance’s sample return scientists. “Each sample represents an integrated history of the planet’s surface.”
As an expert on Earth’s soils, Hausrath is most interested in finding signs of interaction between water and rock. On Earth, life is found practically everywhere there’s water. The same could have been true for Mars billions of years ago, when the planet’s climate was much more like Earth’s.
Researchers at Johannes Gutenberg University Mainz (JGU) are pursuing a completely new and unconventional strategy to improve the way data can be processed and – in particular – stored. The team members, based in Mainz and Jerusalem, have come up with the idea of bringing together two different forms of chirality to develop new data storage systems that are faster, smaller, and more efficient than those currently available.
Chirality, also known as handedness in this context, describes objects that come in two distinctly different configurations that are mirror images of each other such as our left and right hand. “We were inspired by nature, where chirality is a common phenomenon. Chiral molecules can act like a filter for electron spin and ensure functionality even on the smallest scale,” said Professor Angela Wittmann of the JGU Institute of Physics.
Combining the chirality of spin configurations and molecules
In their approach, the researchers from the fields of experimental solid state physics, atomic physics, and molecular chemistry will be using recently discovered chiral spin structures. These so-called skyrmions are tiny vortices in magnetic thin films protected by their chirality. It is this kind of chiral magnetic texture that the researchers intend to combine with chiral molecules over the course of the project. The assumption is that, based on the chiral-chiral interaction, they would have a unique, flexible, controllable, and efficient means of manipulating spin structures. “With the help of a chiral molecule, it should be possible to switch the handedness of the chiral magnetic textures in thin films, for instance, from clockwise to anticlockwise,” clarified Wittmann.
In this case, the chiral molecule with its DNA-like helix structure would act like a spin filter, allowing only certain electrons moving in one direction to pass while holding others back. The researchers will use highly sophisticated sensor technologies to determine how and whether this interaction actually works.
“Our project is groundbreaking in that it brings together two different types of chirality,” emphasized Wittmann. According to the researchers, there is a very real chance that their innovative concept involving the utilization of spintronic components will result in the creation of the next generation of innovative storage, logic, and sensor devices that could be employed in unconventional computing.
The consortium consists of four members of Johannes Gutenberg University Mainz and two members of the Hebrew University of Jerusalem, who will be contributing their expertise in various disciplines. At JGU, these are Professor Angela Wittmann and Professor Mathias Kläui of the Condensed Matter Physics group, Professor Dmitry Budker of the Quantum, Atomic, and Neutron Physics group and the Helmholtz Institute Mainz (HIM), and Professor Eva Rentschler of the Department of Chemistry, collaborating with their partners Professor Yossi Paltiel and Professor Nir Bar-Gill of the Department of Applied Physics at the Hebrew University of Jerusalem.
Carl Zeiss Foundation sponsoring innovative projects through its new CZS Wildcard program
In early 2022, the Carl Zeiss Foundation launched its CZS Wildcard program with the objective of promoting unconventional, interdisciplinary research in the STEM field. Each team must consist of at least three researchers. The purpose of the program is to support projects that are still in a very early phase of realization and are built on original and unconventional concepts with a high potential for innovation. The first five teams will be starting work in early 2023
A pair of microwave radiometers collected data on the storm as they passed over the Caribbean Sea aboard the International Space Station.
Two recently launched instruments that were designed and built at NASA’s Jet Propulsion Laboratory in Southern California to provide forecasters data on weather over the open ocean captured images of Hurricane Ian on Tuesday, Sept. 27, 2022, as the storm approached Cuba on its way north toward the U.S. mainland.
COWVR (short for Compact Ocean Wind Vector Radiometer) and TEMPEST (Temporal Experiment for Storms and Tropical Systems) observe the planet’s atmosphere and surface from aboard the International Space Station, which passed in low-Earth orbit over the Caribbean Sea at about 12:30 a.m. EDT.
Ian made landfall in Cuba’s Pinar del Rio province at 4:30 a.m. EDT, according to the National Hurricane Center. At that time, it was a Category 3 hurricane, with estimated wind speeds of 125 mph (205 kph).
From aboard the International Space Station, NASA-built instruments Compact Ocean Wind Vector Radiometer (COWVR) and Temporal Experiment for Storms and Tropical Systems (TEMPEST) captured wind and water vapor data from Hurricane Ian as the storm neared Cuba. Credit: NASA/JPL-Caltech
The image above combines microwave emissions measurements from both COWVR and TEMPEST. White sections indicate the presence of clouds. Green portions indicate rain. Yellow, red, and black indicate where air and water vapor were moving most swiftly. Ian’s center is seen just off of Cuba’s southern coast, and the storm is shown covering the island with rain and wind.
Young people in England aren’t just drinking less alcohol but most of them are never taking up alcohol at all, and that the increase is widespread among them, said a new study published in BMC Public Health.
Researchers at University College of London analysed data from the annual Health Survey for England and found that the proportion of 16-24 year olds who don’t drink alcohol has increased from 18 per cent in 2005 to 29 per cent in 2015.
The authors found this trend to be largely due to an increasing number of people who had never been drinkers, from 9% in 2005 to 17% in 2015. There were also significant decreases in the number of young people who drank above recommended limits (from 43% to 28%) or who binge drank (27% to 18%). More young people were also engaging in weekly abstinence (from 35% to 50%).
Dr Linda Ng Fat, corresponding author of the study said: “Increases in non-drinking among young people were found across a broad range of groups, including those living in northern or southern regions of England, among the white population, those in full-time education, in employment and across all social classes and healthier groups.”
He has attributed it to the fact that non-drinking may be becoming more mainstream among young people which could be caused by cultural factors or peer pressure. However, the trend is not found among ethnic minorities, those with poor mental health and smokers suggesting that the risky behaviours of smoking and alcohol continue to cluster.
The researchers examined data on 9,699 people aged 16-24 years collected as part of the Health Survey for England 2005-2015 looking at changes in the health and lifestyles of people across England.
The authors analysed the proportion of non-drinkers among social demographic groups and health sub-groups, along with alcohol units consumed by those that did drink and measured their levels of binge drinking for the study.