Using chirality for faster, smaller, and more efficient data storage devices

Researchers at Johannes Gutenberg University Mainz (JGU) are pursuing a completely new and unconventional strategy to improve the way data can be processed and – in particular – stored. The team members, based in Mainz and Jerusalem, have come up with the idea of bringing together two different forms of chirality to develop new data storage systems that are faster, smaller, and more efficient than those currently available.

Chirality, also known as handedness in this context, describes objects that come in two distinctly different configurations that are mirror images of each other such as our left and right hand. “We were inspired by nature, where chirality is a common phenomenon. Chiral molecules can act like a filter for electron spin and ensure functionality even on the smallest scale,” said Professor Angela Wittmann of the JGU Institute of Physics.

Combining the chirality of spin configurations and molecules

In their approach, the researchers from the fields of experimental solid state physics, atomic physics, and molecular chemistry will be using recently discovered chiral spin structures. These so-called skyrmions are tiny vortices in magnetic thin films protected by their chirality. It is this kind of chiral magnetic texture that the researchers intend to combine with chiral molecules over the course of the project. The assumption is that, based on the chiral-chiral interaction, they would have a unique, flexible, controllable, and efficient means of manipulating spin structures. “With the help of a chiral molecule, it should be possible to switch the handedness of the chiral magnetic textures in thin films, for instance, from clockwise to anticlockwise,” clarified Wittmann.

Two chiral molecules on chiral spin structures in a magnetic thin film


Two chiral molecules on chiral spin structures in a magnetic thin film/Two chiral molecules on chiral spin structures in a magnetic thin film (ill./©: Angela Wittmann)

In this case, the chiral molecule with its DNA-like helix structure would act like a spin filter, allowing only certain electrons moving in one direction to pass while holding others back. The researchers will use highly sophisticated sensor technologies to determine how and whether this interaction actually works.

“Our project is groundbreaking in that it brings together two different types of chirality,” emphasized Wittmann. According to the researchers, there is a very real chance that their innovative concept involving the utilization of spintronic components will result in the creation of the next generation of innovative storage, logic, and sensor devices that could be employed in unconventional computing.

The consortium consists of four members of Johannes Gutenberg University Mainz and two members of the Hebrew University of Jerusalem, who will be contributing their expertise in various disciplines. At JGU, these are Professor Angela Wittmann and Professor Mathias Kläui of the Condensed Matter Physics group, Professor Dmitry Budker of the Quantum, Atomic, and Neutron Physics group and the Helmholtz Institute Mainz (HIM), and Professor Eva Rentschler of the Department of Chemistry, collaborating with their partners Professor Yossi Paltiel and Professor Nir Bar-Gill of the Department of Applied Physics at the Hebrew University of Jerusalem.

Carl Zeiss Foundation sponsoring innovative projects through its new CZS Wildcard program

In early 2022, the Carl Zeiss Foundation launched its CZS Wildcard program with the objective of promoting unconventional, interdisciplinary research in the STEM field. Each team must consist of at least three researchers. The purpose of the program is to support projects that are still in a very early phase of realization and are built on original and unconventional concepts with a high potential for innovation. The first five teams will be starting work in early 2023

Also Read:

Detecting Alzheimer’s disease in the blood using Digital ICA

Turning fish waste into quality carbon-based nanomaterial

Imagine World Map Without Humans, Here It Is!

Nobel Prize for Physics, 2017 – Indian Connection

The 2017 Nobel Prize for Physics has been conferred to three scientists namely Rainer Weiss, Barry C Barish & Kip S Thorne under the LIGO Project for their discovery of gravitational waves, 100 years after Einstein’s General Relativity predicted it. The Nobel Prize for Physics 2017 celebrates the direct detection of Gravitational waves arriving from the merger two large Black holes in a distant galaxy a Billion of light years away. Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. This opens a new window to Astronomy since Gravitational Waves are an entirely new way of observing the most violent events in space.

This is a proud moment for India also, since the discovery paper has 39 Indian authors/scientists from nine institutions-, CMI Chennai, ICTS-TIFR Bengaluru, IISER-Kolkata, IISER-Trivandrum, IIT Gandhinagar, IPR Gandhinagar, IUCAA Pune, RRCAT Indore and TIFR Mumbai. primarily funded through individual/ institutional grants by Department of Atomic Energy, Department of Science & Technology and Ministry of Human Resource Development AE, DST and MHRD, who are co-authors of this discovery paper.

Late Professor CV Vishveshvara of RRI, Bengaluru (DST AI) and Professor SV Dhurandhar of IUCAA, Pune and some other Indian scientists made seminal contributions to this field which contributed towards the principles behind the LIGO Detector.

The group led by Bala Iyer (currently at ICTS-TIFR) at the Raman Research Institute in collaboration with scientists in France had pioneered the mathematical calculations used to model Gravitational Wave signals from orbiting black holes and neutron stars. Theoretical work that combined black holes and gravitational waves was published by C. V. Vishveshwara in 1970. These contributions are prominently cited in the discovery paper.

An opportunity for India taking leadership in this field has opened up with the LIGO-India mega-science project that was granted ‘in principle’ approval by the Union Cabinet on Feb 17 2016. LIGO-India brings forth a real possibility of Indian scientists and technologists stepping forward, with strong international cooperation, into the frontier of an emergent area of high visibility and promise presented by the recent GW detections and the high promise of a new window of gravitational-wave astronomy to probe the universe.

The global science community is unanimous that the future of Gravitational wave astronomy and astrophysics, beyond the first discovery, lies with the planned global array of GW detectors, including the LIGO-India observatory. Inclusion of LIGO-India greatly improves the angular resolution in the location of the gravitational-wave source by the LIGO global network. For the discovery event observed by the two advanced LIGO detectors in the US, with a hypothetical LIGO-India in operation, there would have been 100 times improvement in the angular resolution.

The LIGO-India proposal is for the construction and operation of an Advanced LIGO Detector in India in collaboration with the LIGO Laboratories, USA. The objective is to set up the Indian node of the three node global Advanced LIGO detector network by 2024 and operate it for 10 years. The task for LIGO-India includes the challenge of constructing the very large vaccum infrastructure that would hold a space of volume 10 million litres that can accommodate the entire 4 km scale laser interferometer in ultra high vacuum environment at nano-torrs. Indian team is also responsible for installation and commissioning the complex instrument and attaining the ultimate design sensitivity.

The LIGO-India project is being jointly executed by lead institutions: the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune of the University Grants commission, and DAE organisations, Institute for Plasma Research (IPR), Gandhinagar, the Raja Ramanna Centre for Advanced Technology (RRCAT), Indore and the Directorate of Construction & Estate Management (DCSEM) of DAE.

LIGO-India is being jointly funded by the Department of Atomic Energy (DAE) and the Department of Science and Technology (DST). A LIGO-India Apex committee, together with the LIGO-India Project Management Board (LI-PMB) and LIGO-India Scientific Management Board (LI-SMB), were constituted in August 2016 to oversee the project execution, and there has been rapid pace of progress since then. LIGO-India is on track for commencing operations by 2024.