Subcutaneous fat emerges as a protector of Womans’ brains

Womans’ propensity to deposit more fat in places like their hips, buttocks and the backs of their arms, so-called subcutaneous fat, is protective against brain inflammation, which can result in problems like dementia and stroke, at least until menopause, scientists report.

Males of essentially any age have a greater propensity to deposit fat around the major organs in their abdominal cavity, called visceral adiposity, which is known to be far more inflammatory. And, before females reach menopause, males are considered at much higher risk for inflammation-related problems from heart attack to stroke.

“When people think about protection in women, their first thought is estrogen,” says Alexis M. Stranahan, PhD, neuroscientist in the Department of Neuroscience and Regenerative Medicine at the Medical College of Georgia at Augusta University. “But we need to get beyond the kind of simplistic idea that every sex difference involves hormone differences and hormone exposure. We need to really think more deeply about the underlying mechanisms for sex differences so that we can treat them and acknowledge the role that sex plays in different clinical outcomes.”

Diet and genetics are other likely factors that explain the differences broadly assigned to estrogen, says Stranahan, corresponding author of a study in the American Diabetes Association journal Diabetes.

She acknowledges that the findings are potentially heretical and revolutionary and certainly surprising even to her. “We did these experiments to try and nail down, first of all, what happens first, the hormone perturbation, the inflammation or the brain changes.”

Brain Image (NIH)

To learn more about how the brain becomes inflamed, they looked at increases in the amount and location of fat tissue as well as levels of sex hormones and brain inflammation in male and female mice at different time intervals as they grew fatter on a high-fat diet.

Since, much like with people, obese female mice tend to have more subcutaneous fat and less visceral fat than male mice, they reasoned that the distinctive fat patterns might be a key reason for the protection from inflammation the females enjoy before menopause.

They found again the distinctive patterns of fat distribution in males and females in response to a high-fat diet. They found no indicators of brain inflammation or insulin resistance, which also increase inflammation and can lead to diabetes, until after the female mice reached menopause. At about 48 weeks, menstruation stops and fat positioning on the females starts to shift somewhat, to become more like males.

They then compared the impact of the high-fat diet, which is known to increase inflammation body wide, in mice of both sexes following surgery, similar to liposuction, to remove subcutaneous fat. They did nothing to directly interfere with normal estrogen levels, like removing the ovaries.

The subcutaneous fat loss increased brain inflammation in females without moving the dial on levels of their estrogen and other sex hormones.

Bottom line: The Womans’ brain inflammation looked much more like the males’, including increased levels of classic inflammation promoters like the signaling proteins IL-1β and TNF alpha in the brain, Stranahan and her colleagues report.

“When we took subcutaneous fat out of the equation, all of a sudden the females’ brains start to exhibit inflammation the way that male brains do, and the females gained more visceral fat,” Stranahan says. “It kind of shunted everything toward that other storage location.” The transition occurred over about three months, which translates to several years in human time.

Dr. Alexis Stranahan/CREDIT:Michael Holahan, Augusta University

By comparison, it was only after menopause, that the females who did not have subcutaneous fat removed but did eat a high-fat diet, showed brain inflammation levels similar to the males, Stranahan says.

When subcutaneous fat was removed from mice on a low-fat diet at an early age, they developed a little more visceral fat and a little more inflammation in the fat. But Stranahan and her colleagues saw no evidence of inflammation in the brain.

One take-home lesson from the work: Don’t get liposuction and then eat a high-fat diet, Stranahan says. Another is: BMI, which simply divides weight by height and is commonly used to indicate overweight, obesity and consequently increased risk of a myriad of diseases, is likely not a very meaningful tool, she says. An also easy and more accurate indicator of both metabolic risk and potentially brain health, is the also easy-to-calculate waist to hip ratio, she adds.

“We can’t just say obesity. We have to start talking about where the fat is. That is the critical element here,” Stranahan says.

ultra-processed foods

She notes that the new study looked specifically in the hippocampus and hypothalamus of the brain. The hypothalamus controls metabolism and exhibits changes with inflammation from obesity that help control conditions that develop bodywide as a result. The hippocampus, a center of learning and memory, is regulated by signals associated with those pathologies but doesn’t control them, Stranahan notes.

While these are good places to start such explorations, other regions of the brain could respond very differently, so she is already looking at the impact of loss of subcutaneous fat in others. Also, since her evidence indicates estrogen may not explain the protection Women have, Stranahan wants to better define what does. One of her suspects is the clear chromosomal differences between the XX female and the XY male.

Stranahan has been studying the impact of obesity on the brain for several years and is among the first scientists to show that visceral fat promotes brain inflammation in obese male mice, and, conversely, transplanting subcutaneous fat reduces their brain inflammation. Females also have naturally higher levels of proteins that can tamp down inflammation. It’s been shown that in males, but not females, microglia, immune cells in the brain, are activated by a high-fat diet.

She notes that some consider the reason that females have higher stores of subcutaneous fat is to enable sufficient energy stores for reproduction, and she is not challenging the relationship. But many questions remain like how much fat is needed to maintain fertility versus the level that will affect your metabolism, Stranahan says.

–Dr. Alexis Stranahan/CREDIT:Michael Holahan, Augusta University

Also Read:

Fatty fish, camelina oil good for HDL, IDL cholesterol: study

How the mother’s mood influences her baby’s ability to speak

A big step toward producing rhino gametes

To save the northern white rhinoceros from extinction, the BioRescue team is racing to create lab-grown egg and sperm cells of the critically endangered subspecies. The team has now reported a milestone in Science Advances: they have generated primordial germ cells from stem cells – a world’s first.

Thirty-three-year-old Najin and her daughter Fatu are the last surviving northern white rhinos on the planet. They live together in a wildlife conservancy in Kenya. With just two females left, this white rhino subspecies is no longer capable of reproduction – at least not on its own. But all hope is not lost: according to a paper published in the journal Science Advances, an international team of researchers has successfully cultivated primordial germ cells (PGCs) – the precursors of rhino eggs and sperm – from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).


The last two surviving females live in the Ol Pejeta Conservancy in Kenya./CREDIT:Jan Stejskal, Safari Park Dvůr Králové

This represents a major milestone in an ambitious plan. The BioRescue project, which is coordinated by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) and has been funded by the German Federal Ministry of Education and Research (BMBF) since 2019, wants to save the northern white rhino from extinction. To this end, the scientists are pursuing two strategies – one of them trying to generate viable sperm and eggs from the skin cells of deceased rhinos. The idea is to implant the resulting embryos into closely related southern white rhino females, who will then carry the surrogate offspring to term. And so the northern white rhino subspecies, which humans have already effectively wiped out through poaching, may yet be saved thanks to state-of-the-art stem cell and reproductive technologies.

First success with an endangered species

To get from a piece of skin to a living rhinoceros may be a true feat of cellular engineering, but the process itself is not unprecedented: the study’s co-last author Professor Katsuhiko Hayashi leads research labs at the Japanese universities of Osaka and Kyushu in Fukuoka, where his teams have already accomplished this feat using mice. But for each new species, the individual steps are uncharted territory. In the case of the northern white rhinoceros, Hayashi is working in close cooperation with Dr. Sebastian Diecke’s Pluripotent Stem Cells Technology Platform at the Max Delbrück Center and with reproduction expert Professor Thomas Hildebrandt from Leibniz-IZW. The two Berlin-based scientists are also co-last authors of the current study.

“This is the first time that primordial germ cells of a large, endangered mammalian species have been successfully generated from stem cells,” explains the study’s first author, Masafumi Hayashi of Osaka University. Previously, it has only been achieved in rodents and primates. Unlike in rodents, the researchers have identified the SOX17 gene as a key player in rhinoceros PGC induction. SOX17 also plays an essential role in the development of human germ cells – and thus possibly in those of many mammalian species.

The southern white rhino embryonic stem cells being used in Japan come from the Avantea laboratory in Cremona, Italy, where they were grown by Professor Cesare Galli’s team. The newly derived northern white rhino PGCs, meanwhile, originated from the skin cells of Fatu’s aunt, Nabire, who died in 2015 at Safari Park Dvůr Králové in the Czech Republic. Diecke’s team at the Max Delbrück Center was responsible for converting them into induced pluripotent stem cells.

Next step: cell maturation

Masafumi Hayashi says that they are hoping to use the cutting-edge stem cell technology from Katsuhiko Hayashi’s lab to save other endangered rhino species: “There are five species of rhino, and almost all of them are classified as threatened on the IUCN Red List.” The international team also used stem cells to grow PGCs of the southern white rhino, which has a global population of around 20,000 individuals. In addition, the researchers were able to identify two specific markers, CD9 and ITGA6, that were expressed on the surface of the progenitor cells of both white rhino subspecies. “Going forward, these markers will help us detect and isolate PGCs that have already emerged in a group of pluripotent stem cells,” Hayashi explains.

The BioRescue scientists must now move on to the next difficult task: maturing the PGCs in the laboratory to turn them into functional egg and sperm cells. “The primordial cells are relatively small compared to matured germ cells and, most importantly, still have a double set of chromosomes,” explains Dr. Vera Zywitza from Diecke’s research group, who was also involved in the study. “We therefore have to find suitable conditions under which the cells will grow and divide their chromosome set in half.”

Genetic variation is key for conservation

Leibniz-IZW researcher Hildebrandt is also pursuing a complementary strategy. He wants to obtain egg cells from 22-year-old Fatu and fertilize them in Galli’s lab in Italy using frozen sperm collected from four now deceased northern white rhino bulls. This sperm is thawed and injected into the egg in a process known as intracytoplasmic sperm injection (ICSI). However, Hildebrandt explains that Fatu is not able to bear her own offspring, as she has problems with her Achilles tendons and cannot carry any additional weight. Her mother Najin, meanwhile, is past child-bearing age and also suffers from ovarian tumors. “And in any case, since we only have one donor of natural eggs left, the genetic variation of any resulting offspring would be too small to create a viable population,” he adds.

The team’s top priority, therefore, is turning the PGCs they now have at their disposal into egg cells. “In mice, we found that the presence of ovarian tissue was important in this crucial step,” Zywitza explains. “Since we cannot simply extract this tissue from the two female rhinos, we will probably have to grow this from stem cells as well.” The scientist is hopeful, however, that ovarian tissue from horses could come in useful, as horses are among the rhinos’ closest living relatives from an evolutionary standpoint. If only humans had taken as good care of the wild rhino as they had of the domesticated horse, the immense challenge now facing the BioRescue scientists could perhaps have been avoided altogether.

Also Read:

VMC is biomarker of ageing for nematode; what is its role in Humans?

Clarifying the chaos of narwhals behavior; what are narwhals, how they help [Details]

Sound reveals ‘Ocean giants’ dance with wind to find food

Age of Father in IVF Births Crucial: Study

Men, unlike women, do not have a menopause to say they cease to help in fertility but a recent study has found that the chance of natural conception can be affected by the age of the male partner, particularly in the genetic health of sperm cells.

Despite a wide belief and celebrity examples of Charlie Chaplin or Luciano Pavarotti, which have kept alive the notion that male fertility goes on forever, the new study in IVF couples shows quite clearly that live birth outcome is clearly affected by the age of the male partner.

“Our study found an independent effect of male age on the cumulative incidence of live birth,” said investigator Dr Laura Dodge from Harvard Medical School, Boston, USA. He will present the study’s results on Tuesday at the 33rd Annual Meeting of ESHRE in Geneva.

The study was an analysis of IVF cycles performed at an IVF centre in Boston between 2000 and 2014. About 19,000 cycles performed in 7,753 couples were analyzed. The female partners were stratified in four age bands: under 30, 30-35 years, 35-40 years, and 40-42. Men were stratified into these same four age bands, with an additional band of 42 and over.

As expected, the cumulative live birth rate was lowest in those couples where the female partner was in the 40-42 age band, and in this group the age of the male partner had no impact. In other bands of female age, the cumulative incidence of live birth was significantly affected by male partner age and was found to decline as the man grew older.

For example, in couples with a female partner aged under 30, a male partner aged 40-42 was associated with a significantly lower cumulative birth rate (46%) than a male partner aged 30-35 (73%). Similarly, in couples with a female partner aged 35-40 years live birth rates were higher with a younger than with an older male partner.

“Generally,” explained Dr Dodge, “we saw no significant decline in cumulative live birth when women had a male partner the same age or younger. Where we see significant decreases in the cumulative incidence of live birth is among women with male partners in the older age bands.”

Dr Dodge noted that in natural conceptions increasing male age is associated with a decreased incidence of pregnancy, increased time to pregnancy, and increased risk of miscarriage. The mechanisms are unclear but may include impaired semen parameters, increased DNA damage in sperm, and epigenetic alterations in sperm that affect fertilisation, implantation, or embryo development, she said.

 

This is the first study to calculate the cumulative incidence of live birth while jointly stratifying on multiple bands of both male and female age.