Japan’s Tonga volcano eruption nine times taller than 2011 tsunami

New research reveals more about the magnitude of January eruption, as researchers call for better preparedness.

  • The eruption of the Hunga Tonga-Hunga Ha’apai volcano in January created an initial wave 90 metres high – almost the height of the Statue of Liberty (93m)
  • University of Bath tsunami expert calls for better warning systems to detect volcanic eruptions, saying systems are 30 years behind comparable earthquake detection tools

The initial tsunami wave created by the eruption of the underwater Hunga Tonga Ha’apai volcano in Tonga in January 2022 reached 90 metres in height, around nine times taller than that from the highly destructive 2011 Japan tsunami, new research has found.

An international research team says the eruption should serve as a wake-up call for international groups looking to protect people from similar events in future, claiming that detection and monitoring systems for volcano-based tsunamis are ’30 years behind’ comparable tools used to detect earthquake-based events.

tsunami

Tsunami/en.wikipedia.org

Dr Mohammad Heidarzadeh, Secretary-General of the International Tsunami Commission and a senior lecturer in the University of Bath’s Department of Architecture & Civil Engineering, authored the research alongside colleagues based in Japan, New Zealand, the UK and Croatia.

By comparison, the largest tsunami waves due to earthquakes before the Tonga event were recorded following the Tōhoku earthquake near Japan in 2011 and the 1960 Chilean earthquake, reached 10 metres in initial height. Those were more destructive as they happened closer to land, with waves that were wider.

Dr Heidarzadeh says the Tonga tsunami should serve as a wake-up call for more preparedness and understanding of the causes and signs of tsunamis cause by volcanic eruptions. He says: “The Tongan tsunami tragically killed five people and caused large scale destruction, but its effects could have been even greater had the volcano been located closer to human communities. The volcano is located approximately 70 km from the Tongan capital Nuku’alofa – this distance significantly minimized its destructive power.

“This was a gigantic, unique event and one that highlights that internationally we must invest in improving systems to detect volcanic tsunamis as these are currently around 30 years behind the systems we used to monitor for earthquakes. We are under-prepared for volcanic tsunamis.”

The research was carried out by analysing ocean observation data recordings of atmospheric pressure changes and sea level oscillations, in combination with computer simulations validated with real-world data.

The research team found that the tsunami was unique as the waves were created not only by the water displaced by the volcano’s eruption, but also by huge atmospheric pressure waves, which circled around the globe multiple times. This ‘dual mechanism’ created a two-part tsunami – where initial ocean waves created by the atmospheric pressure waves were followed more than one hour later by a second surge created by the eruption’s water displacement.

The eruption created an initial wave 90 metres high/University of Bath

The eruption created an initial wave 90 metres high/University of Bath

This combination meant tsunami warning centres did not detect the initial wave as they are programmed to detect tsunamis based on water displacements rather than atmospheric pressure waves.

The research team also found that the January event was among very few tsunamis powerful enough to travel around the globe – it was recorded in all world’s oceans and large seas from Japan and the United States’ western seaboard in the North Pacific Ocean to the coasts within the Mediterranean Sea.

The paper, co-authored by colleagues from New Zealand’s GNS Science, the Association for the Development of Earthquake Prediction in Japan, the University of Split in Croatia and at London’s Brunel University, was published this week in Ocean Engineering.

Dr Aditya Gusman, Tsunami Modeller at the New Zealand-based geoscience service, says: “The 2018 Anak Krakatau volcano and 2022 Hunga Tonga-Hunga Ha’apai volcano eruptions clearly showed us that coastal areas surrounding volcano islands are at risk of being hit by destructive tsunamis. Although it may be preferable to have low-lying coastal areas completely clear from residential buildings, such a policy may not be practical for some places as volcanic tsunamis can be considered infrequent events.”

Co-author Dr Jadranka Šepić, from the University of Split, Croatia, adds: “What is important is to have efficient warning systems, which include both real-time warnings and education on what to do in a case of a tsunami or warning – such systems save lives. In addition, at volcanic areas, monitoring of volcanic activity should be organized, and more high-quality research into volcanic eruptions and areas at hazard is always a good idea.”

Separate research led by the University of Bath atmospheric physicist Dr Corwin Wright published in June found that the Tonga eruption triggered atmospheric gravity waves that reached the edge of space.

How future volcanic eruptions will impact Earth’s ozone layer

The next major volcanic eruption could kick-start chemical reactions that would seriously damage the planet’s already besieged ozone layer.

The extent of damage to the ozone layer that results from a large, explosive eruption depends on complex atmospheric chemistry, including the levels of human-made emissions in the atmosphere. Using sophisticated chemical modeling, researchers from Harvard University and the University of Maryland explored what would happen to the ozone layer in response to large-scale volcanic eruptions over the remainder of this century and in several different greenhouse gas emission scenarios. The research was published recently in Geophysical Research Letters.

The Earth’s stratosphere is still recovering from the historic release of chlorofluorocarbons (CFCs) and other ozone-depleting chemicals. Even though CFCs were phased out by the Montreal Protocol 30 years ago, levels of chlorine-containing molecules in the atmosphere are still elevated. Explosive volcanic eruptions that inject large quantities of sulfur dioxide into the stratosphere facilitate the chemical conversion of chlorine into more reactive forms that destroy ozone.

Researchers have long known that when concentrations of chlorine from human-produced CFCs are high, ozone depletion will result following a volcanic eruption. When levels of chlorine from CFCs are low, volcanic eruptions can actually increase the thickness of the ozone layer. But exactly when this transition happens — from eruptions that deplete ozone to eruptions that increase ozone layer thickness — has long been uncertain. Previous research has put the window of the transition anywhere between 2015 to 2040.

The Harvard researchers found that volcanic eruptions could result in ozone depletion until 2070 or beyond, despite declining concentrations of human-made CFCs.

“Our model results show that the vulnerability of the ozone column to large volcanic eruptions will likely continue late in to the 21st century, significantly later than previous estimates,” said David Wilmouth, who directed the research and is a project scientist at the Harvard John A. Paulson School of Engineering and Applied Sciences and the Department of Chemistry and Chemical Biology.

So, why is this shift happening so much later than previously thought?

“Previous estimates did not take into account certain natural sources of halogen gases, such as very-short lived bromocarbons originating from marine plankton and microalgae,” said Eric Klobas, lead author and Harvard chemical physics PhD candidate.

Accounting for these emissions fine-tunes the timing of the shift from eruptions that cause ozone depletion to eruptions that increase the thickness of the ozone layer. These natural sources of bromine become especially important in the lower stratosphere after concentrations of human-emitted CFCs have declined.

“We found that the concentration of bromine from natural, very short-lived organic compounds is critically important,” said Klobas. “Even small, part-per-trillion changes in the amount of bromine from these sources can mean the difference between a late 21st century volcanic eruption resulting in ozone column depletion or ozone column enhancement.”

The researchers then explored how a volcanic event the size of the Mount Pinatubo eruption, which shot about 20 million metric tons of sulfur dioxide into the stratosphere in 1991, would impact the ozone layer in 2100. The team modeled four different greenhouse gas emission scenarios, ranging from very optimistic to what is commonly considered the worst-case scenario.

The team found that the most optimistic projection of future greenhouse gas concentrations resulted in the most ozone depletion from a volcanic eruption. Conversely, in the pessimistic scenario in which greenhouse gas emissions continue to increase rapidly throughout the 21st century, a Mount Pinatubo-size eruption would actually lead to a slight increase in ozone. The researchers found that the colder stratospheric temperatures and higher methane levels in this scenario would curb important ozone-depleting chemical reactions.

But, here’s the kicker: all of the above scenarios assumed that the volcanic eruption would only inject sulfur into the stratosphere, like the 1991 eruption of Mount Pinatubo in the Philippines. If the eruption were to also inject halogen-containing chemicals such as hydrogen chloride (HCl) into the stratosphere, the results could be dire.

“If volcanic halogens, which are commonly present in large quantities in volcanic eruptions, were to partition substantially into the stratosphere — in any greenhouse gas emission scenario, at any point in the future — it would potentially cause severe losses of stratospheric ozone,” said Klobas.

In such a case, the United States could see a prolonged and significant decrease in ozone layer thickness – upwards of 15 to 25 percent in the highest halogen scenario modeled. Even small reductions in the thickness of the ozone layer, which shields the surface of the Earth from DNA-destroying ultraviolet radiation, can adversely impact human health and other life on this planet.

“These eruptions are highly unusual events but the possibility does exist, as evidenced in the historical record,” said Wilmouth.